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1. Introduction

2. Dispatch of stochastic generation and distribution systems
with batteries and downstream flexibility.

3. The benefit of dispatching stochastic power flows: a system-
wise analysis.

4. An algorithmic framework to provide multiple ancillary
services with one battery unit.

5. Conclusions
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Integration of battery storage systems in
electrical grids: mainstream trends
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Battery storage integration in the electrical grid

Two operational perspectives for the integration of batteries in the grid:

* Improving system efficiency and social benefits, e.g. reducing reserve,
meeting reliability levels, reducing costs, relieving congestions in
transmission systems, reducing CO2 emissions (?)*.

 Increasing the hosting capacity of distribution networks for renewable
generation (e.g. voltage control, congestion management, peak
shaving).

* Storage might lead to increased CO2 levels due to displacing gas in favor of coal generation, see
e.g. [Lueken and Apt, 2014], [Preskill and Callaway, 2018].
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Storage applications at the system level

* Energy arbitrage: buying cheap electricity and reselling at
higher price (self-defeating scheme).

* Reserve provision, i.e. using batteries to provide reserve
capacity instead of conventional generation units.

 Primary frequency control.

pos
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Applications of storage in distribution systems

« Peak-shaving, PV self-consumption.

 Grid control, i.e. congestions management with nonconvex
optimal power flow, convex relaxations, or linearized OPF.
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Dispatching stochastic generation and
distribution systems with batteries and
downstream flexibility

(in other words, how to seamlessly control distributed
storage to help to provide services to both the local grid
and the system)
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Dispatching stochastic resources

Active Power

Dispatching stochastic resources is making sure that the aggregated active power flow of a set of
heterogenous resources with stochastic output (e.g., demand + PV generation) follows a pre-
established trajectory (dispatch plan) by controlling some flexibility.
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Relevant to reduce the need for power reserves to operate the grid (see later), as opposed to
typical reserve procurement schemes (e.g., market, aggregation).

Not totally new, e.g., proposed already for PV plants [Marinelli2014], [Conte et al., 2017] and wind
farms [Abu2013)].

Extended to heterogeneous resources in [Sossan2016], [Appino2018].
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Dispatching distribution systems [Sossan2016]

EPFL sub-transmission grid
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Figure: Topology of the dispatchable feeder
at EPFL.
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Definition of dispatch plan [Sossan2016]

The dispatch plan is a series at a certain time resolution and look-ahead
horizon (say 5 minutes and 24 hours) of the scheduled active power flow at the

GCP.

It is defined as:

Po=1L;+F ...,N
Point prediction of the Offset profile

prosumption at the It restores an adequate battery state-of-energy to
ensure that enough up/down-flexibility is available

GCP during operation to compensate for the mismatch
between prosumption and realization.
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Dispatch plan: point predictions of the ‘prosumption’

Forecasting stochastic demand/generation is a well-established practice. It is

however challenging when at a high level of disaggregation (e.g., at low or

medium voltage levels) du to high volatility and non-stationarity of the series.

ARIMAX-class models generally fails in capturing highly disaggregated

prosumption profiles.

Non-parametric methods found to be perform better than parametric ones.

In distribution networks with large presence of distributed PV generation,
accounting for irradiance patterns is key for good performance.

Our proposed way:

Historical

Active Power

Flow

Measurements
at the GCP

Disaggregated PV
generation from

aggregated demand
[Sossan2018]

PV forecasting (physical
model tool-chain with NWP)

Demand Forecasting

N

Final

| forecasts
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Dispatch plan: computation of the offset profile

During operation at time i, the battery compensates for the mismatch between dispatch plan P, and
stochastic realization L, . The battery injection is:

B; = ﬁt — L by applying the dispatch plan definition By =F +Li— Ly

Let AT, A} denote largest deviations between the extreme realizations of the demand and the point predictions.

Scenarios

I‘hat I"s;up and I‘inf ‘

1 1

10 15 20
Time t (hours)
Battery action in worst cases Battery state-of-energy in worst case scenarios

+ _

Bl = F, +A] SOE[,, = SOE] + 8+ |Bl| " + 4~ |B]|
1 _ \: + _ -

By = Fy + A SOE}, , = SOE} + 8+ [Bi] + 8 [Bﬂ

yo g
F. Sossan, Dispatch and clustering of ancillary services from distributed storage

MINES
P«ITI\T(‘Ch* 13



Dispatch plan: computation of the offset profile — cont'd

With AT, A} given, we seek an offset profile F=[F1, .., FN] so that the battery’s state-of-energy and
power injection are within limits:

N Sequence with least norm-2
. 2 (arbitrary, it could be just a feasibility
F? = arg min Z Fy problem)

subject to (for t =0,1,...,N —1):
Bl = F, + A]
B = F, + A}
_+_ —
&mﬂ;1ZSOEI+5+[Bﬂ -+ﬁ—{3ﬂ

&Mﬁ41=SOEi+6+[3ﬂ+l+5_{Bﬂ
SOE}, | > SOEmin,

Worst case lowest state-of-energy must be higher

th ini llowed
an minimum allowe SOE;Ll < SOE 1 ax
B] < Biax - N
. Battery’s injection within converter’s limit
Bt 2 Bmin
Py < Phax Flow constraint at the GCP (assuming 1 pf)

(nonconvex due to the sign operators, can be convexified as done in the paper)
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Validation: experimental setup

EPFL sub-transmission grid

50/20 kV
20 MVA

Grid Connection Point

Aggregated consumption

20/0.17 kV|
0.75 MW

BESS injection
Buildings with 95 kWp rooftop PV

= Single measurement point at the GCP.
= 350 kW peak demand during winter.
= 95 kWp roof-top PV installation.




Validation: battery energy storage system

Parameter Value

Nominal Capacity
GCP Voltage
DC Bus Voltage Range

Cell Technology
(Anode/Cathode)

Number of racks

Number of modules per
rack

Cells configuration per
module

Total number of cells
Cell nominal voltage

Cell nominal capacity

Round-trip efficiency
(AC side)

Round-trip efficiency
(DC side)
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720 kVA/560 kWh
20 kV
600/800 V

Lithium Titanate Oxide (LTO)
Nichel Cobalt Alumnium Oxide (NCA)

9 in parallel

15 in series

20s3p

8100
2.3V (limits 1.7 to 2.7 V)

30 Ah (69 Wh)
94-96%

97-99%
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Validation: implementation and operation

Time (hours before the beginning of the day of operation)

The feeder dispatch plan on a

5-minute basis is determined.
-1

-
The feeder i1s dispatched accord-

ing to the dispatch plan.
0 > >
Tracking of the dispatch plan. | Receding horizon MPC to

control BESS injections.

24
\/ Y \{
TSO Dispatchable feeder operator BESS

Day-ahead scheduling Intra-day and real time operation
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Validation: experimental results

» Dispatch on Jan 14, 2016

EPFL sub-t grid
. 50/20 71‘<V Grid Connec tion Point
 Dispatch on Jan 13, 2016 Y perenated coneumptio

BESS if]_i« ction
Buildings with 95 kWp rooftop PV

' %mmmw :EEE

» Dispatch with load levelling on Mar 14, 2016

i‘ T 1 1 1 T 1
- Dispatch with peak-shaving on Jun 22, 2016 T %ﬁ %Q %ﬁ %g B

 Dispatch from Jun 16 to 19, 2016
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https://snapshot.raintank.io/dashboard/snapshot/cDS4IDniZjRiePXvusnmQXOmMwpGLnR6
https://snapshot.raintank.io/dashboard/snapshot/LSF3bPxtWYDjHVu6siEr1VPb92EXNkd6
https://snapshot.raintank.io/dashboard/snapshot/4ztn800czpAzEFRzbGOmWc1A2pKeC9ab
https://snapshot.raintank.io/dashboard/snapshot/TNbEgP7j1AWhaW7cEK1ZiK3tY1Or7P4U

Extension to multiple controllable resources

What if we have multiple flexible elements in the mix (e.g. battery, flexible
demand and curtailable renewable generation)?

They all concur in achieving the dispatch control problem. In brief, the
formulation can be extended by:

« Compute one dispatch plan per each element in the mix [Fabietti et al.,
2018].

 The dispatch plan at the GCP is the algebraic sum of the individuals
dispatch plans (eventually with losses, see [Stai, et al., 2018]).

* The real-time control problem with multiple controllable elements is
distributable (tractable) [Fabietti et al., 2017] [Gupta et al., 2018].

F. Sossan, Dispatch and clustering of ancillary services from distributed storage MINES e 19



3

The benefit of dispatching stochastic
power flows: a system-wise analysis
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System validation [Bozorg2018]

What if dispatching distribution systems is applied as a mechanism to achieve implicit
coordination between load balance responsible and aggregators?

A Monte Carlo simulation framework to simulate reserve activation as a
function of the grid frequency and load shedding.

We measure the impact of dispatching vs non-

Generate a random scenario for dispatching by measuring the amount of energy
stochastic generation and demand y :
Calculate system not served in a large power system.
y
frequency after PFR
|
v *
Power: regulation capacity vs demand ¢ P$8 1005
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A
Mo 1"
mi15 114 pe V‘g’
$117 e T
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-2. z £ Z 7!
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| I Figure. Case study:126-bus Western Danish transmission
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Calculate Expected Load Not Served (ELNS) system (400, )-
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System validation [Bozorg2018]

101
En: 10_2
7]
Z
= 10-3
104

0.1 0.2 0.3 0.4 0.5

Proportion of dispatched prosumption (pu)

Fig.: Energy not served vs proportion of dispatched

prosumption = increasing dispatch improves reliability.

We use a model from the literature to assess
the cost of the regulating and calculate the
economic pay-back time.

(*) Skytte, K., ‘An econometric analysis for the regulating
power market’, 1999.

Cost (Million Euro)

4 —0O— Upward
:?; . —+— Downward
% 7.
@ D)
2 0
>~, L
2
% /
A —2

0.1 0.2 0.3 0.4 0.5
Proportion of dispatched prosumption (pu)

Fig.: Deployed power reserves vs penetration of
dispatchable feeders at constant energy reserve.

4,000

No dispatch

2,000 | —— With dispatch

0O 2 4 6 8 10 12 14
Year
Fig.: Operational costs and pay-back time at .5

dispatched presumption = pay-back time is
compatible with storage life-time.
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An algorithmic framework to provide
multiple ancillary services with one battery
unit
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Provision of multiple ancillary services [Namor2018]

350

Single-service applications might underuse battery’s power rating and energy capacity:

‘ 350
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300 300 o
g
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Fig.: Dispatch with high uncertainty. Fig.: Dispatch with low uncertainty.

Residual power/energy capacity can be used to provide multiple ancillary services simultaneously.
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Algorithm for stacking ancillary services

We have multiple services to provide. We define for each grid ancillary service ; the:

- | Power Budget | —— Energy Budget |
20 P 20 Ejy i
2 0 Pj S ollEj
-20 | P -20 E},
1 k Timem N 1 k Time N
P; = Pjﬁk(x,ﬁ),P},k(x,H) k=1,...,N & =1\t x,@,ET z,0),k=1,...,N
J 7,k 7,k

parametrized over vector of controller's parameters x and forecast of the unitary budgets 6.

Operator to determine width of envelopes:  w(&;(,0)) £ {El (z,0) — Ey . (z,0),k=1,...,N}

arg max
xr

w(}_ & (.0))

J

1

We seek to find the controllers’ parameters which
maximize the exploitation of the battery energy

capacity subject to the battery’s power and ;
energy constraints. > " Pi(x,0) € [~ Praz: Pras)
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Stacking ancillary services: Results

Dispatch + primary frequency regulation (PFR)

Power Budget Worst case high and worst Drop coefficient (unknown, to

case low power deviation determine) time worst case
from the dispatch plan. frequency deviation (200 mHz).
Energy Budget Integral of worst case 9-95% quantiles of the distribution

deviations. of the accumulated frequency
deviation in 1 day over a 2-year
period.
yorl
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Stacking ancillary services: Results

Day-ahead scheduling for dispatch and primary frequency control

kKWh

Energy allocated
for dispatch

Energy limits Allocated droop

coefficient (one per day)
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300

250

KW/Hz

200
150

100

Total allocated
energy
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Conclusions

* Dispatching stochastic prosumption by using downstream
flexibility achieves to reduce reserve requirements.

* Cost effective: pay-back time is shorter than storage life.

* |t can be regarded to as a way to achieve efficient
coordination between DSOs and load balance responsible.

* We outlined an algorithmic framework to provide multiple
ancillary services with the same battery.
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