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Outline

1. Mainstream trends for the integration of battery storage 
systems in electrical grids.

2. Dispatch of stochastic generation and distribution systems 
with batteries and downstream flexibility.

3. Practices for modelling and control of grid-connected battery 
systems in energy management applications.



Dispatching Stochastic Power Flows by Distributed Control of DERs, Fabrizio Sossan | 20.10.2017 3

Mainstream trends for the integration of 
battery storage systems in electrical grids.

1
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Battery storage integration in the electrical grid

Two operational perspectives for the integration of batteries in the grid:

• Improving performance at the system level and increasing social 
benefit, e.g. reducing reserve, meeting reliability levels, reducing costs, 
relieving congestions in transmission systems, reducing CO2 
emissions (?)*.

• Enabling a larger installed capacity of distributed renewable generation 
in distribution systems (e.g. voltage control, congestion management, 
peak shaving).

* Storage might lead to increased CO2 levels due to displacing gas in favor of coal generation, see 
e.g. [Lueken and Apt, 2014], [Preskill and Callaway, 2018].
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Storage applications at the system level

“Classical” market-driven applications:

• Energy arbitrage: buying cheap electricity and reselling at 
higher price (economic advantage does not scale with the 
number of batteries).

• Reserve provision, i.e. use batteries to provide reserve 
capacity instead of conventional generation units.

• Primary frequency control.
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Storage integration at system level – Tracking capability

Fig.: Large coal power plant.

AGC signal-tracking capability: coal-fired generation plant vs. battery [AEMO, 2018]. 

Fig.: Hornsdale power reserve 
100/80 MW, 129 MWh grid-connected battery
(New South Wales, Australia, in operation since Dec 2017, connected 

to 275 kV HV).
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Storage integration at system level – Empirical evidence
Ramping rate of Hornsdale power reserve during a contingency (18 Dec 2016, loss of 690 
MW generating capacity) [AEMO, 2018]:

Fig.: Hornsdale power reserve’s power delivery after a frequency drop. Estimated ramping 
rate is 13 MW/s, approx. 780% of nominal capacity per minute vs. 5, 15, 20% of coal, 

hydro, and gas.   
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Storage integration at system level – Empirical evidence, cont’d
2016 South Australia blackout. Grid with low meshing factor. 48% wind, 34% import, 18% gas. 
Faults on 5 transmission lines, 500 MW generation loss from wind farms due to storm conditions, 
activation of a loss-of-synchronism protection and tripping of 1 of the 2 line importing power.

Fig.: Grid frequency before power blackout in South Australia on Sept. 26th [AEMO, 2017]. 
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Applications of storage in distribution systems

Applications of storage in distribution systems have been proposed for:

• Peak-shaving, PV self-consumption.

• Mitigation of violations of nodal voltage and line current constraints, 
normally including a network model, where power flow equations are 
linearized (e.g. [Christakou et al., 2013], [Bolognani and Dorfler, 2015], 
[Bernstein and Dall’Anese, 2017], [Fortenbacher et al., 2017]) or 
convex relaxation (e.g. [Gan et al., 2015], [Nick et al., 2018]) to achieve 
tractable formulations.
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Battery storage applications 

General consensus on:

• operational value of distributed storage;

• delivering multiple services with batteries leads to better exploitation of 
storage capacity and shortens payback times;

• importance of storage will increase for increasing installed capacity of 
distributed generation (e.g. increased ramping duties of low-inertia 
power systems, grid control in LV/MV systems);

• specific policies and market regulations will play a crucial role in 
storage deployment.
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Dispatch of stochastic generation and 
distribution systems with batteries and 
downstream flexibility.

2
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Dispatching stochastic resources

Dispatching stochastic resources, such as:

• PV plants [Marinelli et al., 2014], [Conte et al., 2017].

• wind farms [Abu Abdullah et al., 2015], and

• heterogeneous resources [Sossan et al., 2016], [Appino et al., 2018],

by leveraging forecasts and exploiting local flexibility is often advocated to 
reduce the amount of reserve requirements required to operate the grid.
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Dispatching heterogeneous resources [Sossan et al., 2016] 

Dispatch Plan (shaded orange)
Stochastic flow
Corrected stochastic flow 

Problem Statement

• Compute a dispatch plan for a set of heterogeneous 
resources at the grid connection point (GCP) 
accounting for local grid constraints and local storage 
capacity (see also [Stai et al., 2017]).

• Control storage devices in real-time to track the 
dispatch plan.
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Dispatch of stochastic resources – A two stage process



Dispatching Stochastic Power Flows by Distributed Control of DERs, Fabrizio Sossan | 20.10.2017 15

Dispatch of stochastic resources – Dispatch plan

The dispatch plan is a 1-day long sequence at 5 minute resolution of the 
scheduled power flow at the GCP:

Section III describes the experimental facility used to vali-
date the proposed control strategy. Section IV presents and
discusses the results from the experimental validation. Finally,
Section V summarizes the outcomes of this work and proposes
the perspectives.

II. METHODS

A. Problem statement
We consider a group of prosumers, for which we would like

to smooth the consumption profile (load leveling) and dispatch
their operation. As anticipated, the problem is formulated
according to a two-stage procedure: day-ahead and intra-day
phase. In the day-ahead stage, the objective is to determine
the dispatch plan, namely the power consumption profile
that the group prosumers is willing to follow during real-
time operation. The dispatch plan is built as the sum of the
forecasted power consumption profile, obtained through data-
driven forecasting, and an offset profile. This latter quantity,
which is obtained by solving a convex optimization problem,
has the objective of generating a dispatch plan with minimum
variance, namely with minimum variation with respect to its
average value such that, during operation, the BESS will
charge (discharge) when the power profile exceeds (is below)
the levelled profile and viceversa.

The intra-day operation consist in controlling the BESS
active power injection in order to track the dispatch plan,
namely compensating for deviations between the dispatch plan
and actual consumption, which are likely to differ due to the
offset profile and to forecasting errors. This is accomplished
using MPC, as illustrated in section II-C2.

B. Day-ahead problem
The objective is to build the dispatch plan, namely the

power consumption profile that the feeder should follow during
operation, the day after. The dispatch plan bP is defined as the
sequence of N = 288 (i.e., the number of 5-minute intervals in
24 hours) average power consumption values for the incoming
day. The feeder dispatch plan is composed by the sum of the
prosumers forecasted consumption profile bLt and the offset
profile Ft:

bPt = bLt + Ft t = 1, . . . , N (1)

which are determined using the process illustrated in the next
two paragraphs.

1) Prosumers data-driven forecasting: The prosumers fore-
casted consumption profile, denoted by bL, is produced through
a nonparametric black-box method based on vector auto-
regression. We assume that D daily sequences of 5 minutes
average power consumption measurements are known from
historical data: these are denoted by L d 2 RN , d =
0, . . . , D� 1. For any index d, are also known i) the calendar
day-of-year, ii) whether the day corresponds to a working day

2In the problem formulation we do not consider the operational constraints
associated to the grid. In other words, we assume that the battery power rating
results in grid voltages and currents within operational bounds. This is the
case for stiff medium voltage grids.

or a holiday and iii) the mean global horizontal irradiance
(GHI) during that day. The day for which the forecast profile
is to be computed is said target day and is identified by d⇤.
At first, a set ⌦ of indexes d that are representative scenarios
of the target day is determined. ⌦ is identified by retaining
from the complete dataset the indices of the daily sequences
with characteristics more similar to those of the target day
with regard to three conditions:

• being a working day or a holiday;
• being in the same period of the year;
• having similar weather conditions.

This is done by identifying subsequent shrinking subsets of
indices, through the following heuristic procedure:

• a first subset ⌦00 is composed by selecting the indices
that correspond to working days if the d⇤ is such and to
holidays otherwise;

• a subset ⌦0 is then obtained by retaining from ⌦00 the p0

indices having day-of-year closer to the one of d⇤;
• finally, the set ⌦ is obtained by retaining from ⌦0 the p

(with p < p0) indices corresponding to days with mean
GHI closer to the one forecasted for d⇤. The GHI is
calculated from publicly available cloud coverage forecast
data for the Lausanne area and by means of the model
described in [7].

The values for p0 and p are chosen equal to 10 and 5
respectively.
Summarizing, the set ⌦ is composed of p indexes correspond-
ing to days which are i) of the same kind as the target day, ii)
closest in time to the target-day and iii) closest in amount of
radiation to the GHI forecast for the target-day d⇤.

The sequence of point predictions for the day d⇤, denoted
by bL0, . . . , bLN�1, is obtained by equally averaging the daily
sequences identified by the indexes in ⌦:

bLi =
1

|⌦|
X

d2⌦

L d
i i = 0, . . . , N � 1, (2)

where L d
i denotes the value at the discrete time interval i of

the scenario L d and |⌦| is the cardinality of the set ⌦.
2) Dispatch plan offset profile: The objectives of the offset

profile are
• altering the dispatch plan so that it is with mininum

variance;
• making sure that an adequate level of charge is available

in the BESS to achieve dispatchability during intra-day
operation.

We define the average daily power consumption value as:

bLavg =
1

N

NX

t=1

bLt. (3)

The offset profile F o =
�
F o
1 , . . . , F

o
N

�
is determined by a

constrained optimization problem that minimizes the move-
ment of the forecasted consumption sequence bL1, . . . , bLN

around its average daily value bLavg . The optimization problem
constraints are:

Offset profile
It restores an adequate battery state-of-energy to 
ensure that enough up/down-flexibility is available 
during operation to compensate for the mismatch 
between prosumption and realization.

Prosumption point 
prediction at the GCP
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Dispatch of [..] resources – Day-ahead forecasts

Objective: forecasting the aggregated active power 
flow at the GCP of the set of heterogeneous resources 
for the next day.

Broad topic, generally. Challenging and novel due 
to the low level of aggregation (volatile series, very 
dependent on the mix of the underlying demand à
whenever possible, tendency to adopt physical 
models to explain power flow patterns).

Procedure for hybrid black-box/physical forecasting with demand and PV:

Historical
Active Power 

Flow
Measurements 

at the GCP

Physical PV 
generation 

model

Irradiance forecasts from 
numerical weather predictions

Historical
Estimated Demand

Black-box 
vector auto-
regression 
forecasting 

+
Forecasts of 

the active 
power flow at 

the GCP

Disaggregation
into

{PV, Demand}
[Sossan et al., 2018]

Estimated
installed PV capacity.

Section III describes the experimental facility used to vali-
date the proposed control strategy. Section IV presents and
discusses the results from the experimental validation. Finally,
Section V summarizes the outcomes of this work and proposes
the perspectives.

II. METHODS

A. Problem statement
We consider a group of prosumers, for which we would like

to smooth the consumption profile (load leveling) and dispatch
their operation. As anticipated, the problem is formulated
according to a two-stage procedure: day-ahead and intra-day
phase. In the day-ahead stage, the objective is to determine
the dispatch plan, namely the power consumption profile
that the group prosumers is willing to follow during real-
time operation. The dispatch plan is built as the sum of the
forecasted power consumption profile, obtained through data-
driven forecasting, and an offset profile. This latter quantity,
which is obtained by solving a convex optimization problem,
has the objective of generating a dispatch plan with minimum
variance, namely with minimum variation with respect to its
average value such that, during operation, the BESS will
charge (discharge) when the power profile exceeds (is below)
the levelled profile and viceversa.

The intra-day operation consist in controlling the BESS
active power injection in order to track the dispatch plan,
namely compensating for deviations between the dispatch plan
and actual consumption, which are likely to differ due to the
offset profile and to forecasting errors. This is accomplished
using MPC, as illustrated in section II-C2.

B. Day-ahead problem
The objective is to build the dispatch plan, namely the

power consumption profile that the feeder should follow during
operation, the day after. The dispatch plan bP is defined as the
sequence of N = 288 (i.e., the number of 5-minute intervals in
24 hours) average power consumption values for the incoming
day. The feeder dispatch plan is composed by the sum of the
prosumers forecasted consumption profile bLt and the offset
profile Ft:

bPt = bLt + Ft t = 1, . . . , N (1)

which are determined using the process illustrated in the next
two paragraphs.

1) Prosumers data-driven forecasting: The prosumers fore-
casted consumption profile, denoted by bL, is produced through
a nonparametric black-box method based on vector auto-
regression. We assume that D daily sequences of 5 minutes
average power consumption measurements are known from
historical data: these are denoted by L d 2 RN , d =
0, . . . , D� 1. For any index d, are also known i) the calendar
day-of-year, ii) whether the day corresponds to a working day

2In the problem formulation we do not consider the operational constraints
associated to the grid. In other words, we assume that the battery power rating
results in grid voltages and currents within operational bounds. This is the
case for stiff medium voltage grids.

or a holiday and iii) the mean global horizontal irradiance
(GHI) during that day. The day for which the forecast profile
is to be computed is said target day and is identified by d⇤.
At first, a set ⌦ of indexes d that are representative scenarios
of the target day is determined. ⌦ is identified by retaining
from the complete dataset the indices of the daily sequences
with characteristics more similar to those of the target day
with regard to three conditions:

• being a working day or a holiday;
• being in the same period of the year;
• having similar weather conditions.

This is done by identifying subsequent shrinking subsets of
indices, through the following heuristic procedure:

• a first subset ⌦00 is composed by selecting the indices
that correspond to working days if the d⇤ is such and to
holidays otherwise;

• a subset ⌦0 is then obtained by retaining from ⌦00 the p0

indices having day-of-year closer to the one of d⇤;
• finally, the set ⌦ is obtained by retaining from ⌦0 the p

(with p < p0) indices corresponding to days with mean
GHI closer to the one forecasted for d⇤. The GHI is
calculated from publicly available cloud coverage forecast
data for the Lausanne area and by means of the model
described in [7].

The values for p0 and p are chosen equal to 10 and 5
respectively.
Summarizing, the set ⌦ is composed of p indexes correspond-
ing to days which are i) of the same kind as the target day, ii)
closest in time to the target-day and iii) closest in amount of
radiation to the GHI forecast for the target-day d⇤.

The sequence of point predictions for the day d⇤, denoted
by bL0, . . . , bLN�1, is obtained by equally averaging the daily
sequences identified by the indexes in ⌦:

bLi =
1

|⌦|
X

d2⌦

L d
i i = 0, . . . , N � 1, (2)

where L d
i denotes the value at the discrete time interval i of

the scenario L d and |⌦| is the cardinality of the set ⌦.
2) Dispatch plan offset profile: The objectives of the offset

profile are
• altering the dispatch plan so that it is with mininum

variance;
• making sure that an adequate level of charge is available

in the BESS to achieve dispatchability during intra-day
operation.

We define the average daily power consumption value as:

bLavg =
1

N

NX

t=1

bLt. (3)

The offset profile F o =
�
F o
1 , . . . , F

o
N

�
is determined by a

constrained optimization problem that minimizes the move-
ment of the forecasted consumption sequence bL1, . . . , bLN

around its average daily value bLavg . The optimization problem
constraints are:



Dispatching Stochastic Power Flows by Distributed Control of DERs, Fabrizio Sossan | 20.10.2017 17

We seek for a solution F=[F1, .., FN] so 
that the battery’s state-of-energy and 
power injection are within limits.

(nonconvex due to the sign operators, convexified in [Sossan et al., 2016])               
.

Dispatch of stochastic resources – Offset profile

During operation, at time i, the battery compensates for the mismatch between the dispatch 
plan and the realization Li. The battery’s power injection is:

from the previous definition of the dispatch plan

Let            the largest and smallest  deviation of the 
prosumption’s realization from its expected value 
(based on scenarios).

E.g., the battery’s lowest injection at time i is

Worst case lowest state-of-energy 
must be higher than minimum allowed

Worst case highest state-of-energy 
must be higher than minimum allowed

Battery’s injection within converter 
limit (only active power)

Flow constraint at the GCP (assuming 1 pf)

Offset with least norm-2
(arbitrary standard choice, it could 

be just a feasibility problem)

Charging efficiency

Section III describes the experimental facility used to vali-
date the proposed control strategy. Section IV presents and
discusses the results from the experimental validation. Finally,
Section V summarizes the outcomes of this work and proposes
the perspectives.

II. METHODS

A. Problem statement
We consider a group of prosumers, for which we would like

to smooth the consumption profile (load leveling) and dispatch
their operation. As anticipated, the problem is formulated
according to a two-stage procedure: day-ahead and intra-day
phase. In the day-ahead stage, the objective is to determine
the dispatch plan, namely the power consumption profile
that the group prosumers is willing to follow during real-
time operation. The dispatch plan is built as the sum of the
forecasted power consumption profile, obtained through data-
driven forecasting, and an offset profile. This latter quantity,
which is obtained by solving a convex optimization problem,
has the objective of generating a dispatch plan with minimum
variance, namely with minimum variation with respect to its
average value such that, during operation, the BESS will
charge (discharge) when the power profile exceeds (is below)
the levelled profile and viceversa.

The intra-day operation consist in controlling the BESS
active power injection in order to track the dispatch plan,
namely compensating for deviations between the dispatch plan
and actual consumption, which are likely to differ due to the
offset profile and to forecasting errors. This is accomplished
using MPC, as illustrated in section II-C2.

B. Day-ahead problem
The objective is to build the dispatch plan, namely the

power consumption profile that the feeder should follow during
operation, the day after. The dispatch plan bP is defined as the
sequence of N = 288 (i.e., the number of 5-minute intervals in
24 hours) average power consumption values for the incoming
day. The feeder dispatch plan is composed by the sum of the
prosumers forecasted consumption profile bLt and the offset
profile Ft:

bPt = bLt + Ft t = 1, . . . , N (1)

which are determined using the process illustrated in the next
two paragraphs.

1) Prosumers data-driven forecasting: The prosumers fore-
casted consumption profile, denoted by bL, is produced through
a nonparametric black-box method based on vector auto-
regression. We assume that D daily sequences of 5 minutes
average power consumption measurements are known from
historical data: these are denoted by L d 2 RN , d =
0, . . . , D� 1. For any index d, are also known i) the calendar
day-of-year, ii) whether the day corresponds to a working day

2In the problem formulation we do not consider the operational constraints
associated to the grid. In other words, we assume that the battery power rating
results in grid voltages and currents within operational bounds. This is the
case for stiff medium voltage grids.

or a holiday and iii) the mean global horizontal irradiance
(GHI) during that day. The day for which the forecast profile
is to be computed is said target day and is identified by d⇤.
At first, a set ⌦ of indexes d that are representative scenarios
of the target day is determined. ⌦ is identified by retaining
from the complete dataset the indices of the daily sequences
with characteristics more similar to those of the target day
with regard to three conditions:

• being a working day or a holiday;
• being in the same period of the year;
• having similar weather conditions.

This is done by identifying subsequent shrinking subsets of
indices, through the following heuristic procedure:

• a first subset ⌦00 is composed by selecting the indices
that correspond to working days if the d⇤ is such and to
holidays otherwise;

• a subset ⌦0 is then obtained by retaining from ⌦00 the p0

indices having day-of-year closer to the one of d⇤;
• finally, the set ⌦ is obtained by retaining from ⌦0 the p

(with p < p0) indices corresponding to days with mean
GHI closer to the one forecasted for d⇤. The GHI is
calculated from publicly available cloud coverage forecast
data for the Lausanne area and by means of the model
described in [7].

The values for p0 and p are chosen equal to 10 and 5
respectively.
Summarizing, the set ⌦ is composed of p indexes correspond-
ing to days which are i) of the same kind as the target day, ii)
closest in time to the target-day and iii) closest in amount of
radiation to the GHI forecast for the target-day d⇤.

The sequence of point predictions for the day d⇤, denoted
by bL0, . . . , bLN�1, is obtained by equally averaging the daily
sequences identified by the indexes in ⌦:

bLi =
1

|⌦|
X

d2⌦

L d
i i = 0, . . . , N � 1, (2)

where L d
i denotes the value at the discrete time interval i of

the scenario L d and |⌦| is the cardinality of the set ⌦.
2) Dispatch plan offset profile: The objectives of the offset

profile are
• altering the dispatch plan so that it is with mininum

variance;
• making sure that an adequate level of charge is available

in the BESS to achieve dispatchability during intra-day
operation.

We define the average daily power consumption value as:

bLavg =
1

N

NX

t=1

bLt. (3)

The offset profile F o =
�
F o
1 , . . . , F

o
N

�
is determined by a

constrained optimization problem that minimizes the move-
ment of the forecasted consumption sequence bL1, . . . , bLN

around its average daily value bLavg . The optimization problem
constraints are:
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Experimental validation: setup at EPFL, CH

§ Single measurement point at the GCP.
§ 350 kW peak demand during winter.
§ 95 kWp roof-top PV installation.
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Experimental validation: results

Dispatched operation -- 14 Jan 2016
https://snapshot.raintank.io/dashboard/snapshot/PuW1Rf5d470Q0gsT7UNponM25bGDNTRA

Dispatched operation -- 13 Jan 2016
https://snapshot.raintank.io/dashboard/snapshot/cDS4IDniZjRiePXvusnmQXOmMwpGLnR6

Dispatched operation + Peak Shaving -- 22/06/2016
https://snapshot.raintank.io/dashboard/snapshot/LSF3bPxtWYDjHVu6siEr1VPb92EXNkd6

Dispatched Operation + Load Levelling -- 14/03/2016
https://snapshot.raintank.io/dashboard/snapshot/4ztn800czpAzEFRzbGOmWc1A2pKeC9ab

Dispatched operation (continuos operation) -- 16 to 19/03/2016
https://snapshot.raintank.io/dashboard/snapshot/TNbEgP7j1AWhaW7cEK1ZiK3tY1Or7P4U

https://snapshot.raintank.io/dashboard/snapshot/PuW1Rf5d470Q0gsT7UNponM25bGDNTRA
https://snapshot.raintank.io/dashboard/snapshot/cDS4IDniZjRiePXvusnmQXOmMwpGLnR6
https://snapshot.raintank.io/dashboard/snapshot/LSF3bPxtWYDjHVu6siEr1VPb92EXNkd6
https://snapshot.raintank.io/dashboard/snapshot/4ztn800czpAzEFRzbGOmWc1A2pKeC9ab
https://snapshot.raintank.io/dashboard/snapshot/TNbEgP7j1AWhaW7cEK1ZiK3tY1Or7P4U
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Fig.: Dispatch planning with  
higher uncertainty.

Fig.: Dispatch planning with  lower
uncertainty.

Provision of multiple ancillary services with same battery
Single service applications lead to poor exploitation of battery’s power and energy ratings.

Residual power/energy capacity can be used to provide multiple ancillary services simultaneously. 
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Stacking of ancillary services [Namor et al., 2018]
We have multiple services to provide. We define for each grid ancillary service j the:

Time

Power Budget

Time

Energy Budget

Operator to determine width of envelopes:

We seek to find the controllers’ parameters which 
maximize the exploitation of the battery energy 
capacity subject to the battery’s power and 
energy constraints.  

parametrized over vector of controller’s parameters  x and forecast of the unitary budgets θ.
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Stacking of ancillary services: Results [Namor et al., 2018]

Link to results

Dispatch + primary frequency regulation (PFR)

Dispatch PFR

Power Budget Worst case high and worst case 
low power deviation from the 

dispatch plan.

Drop coefficient (unknown, to 
determine) time worst case frequency 

deviation (200 mHz).

Energy Budget Integral of worst case 
deviations.

5-95% quantiles of the distribution of 
the accumulated frequency deviation 
in 1 day over a 2-year period.

Fig.: Battery’s state of energy (SOE): realization (thick blue line), worse cases for 
dispatch (dashed black line), worse cases for dispatch + PFR (shaded grey), and 

allocated drop coefficient (orange dots).

https://snapshot.raintank.io/dashboard/snapshot/WpmNznbL0PH7do6FmzM6keYCGkdgDr21
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Dispatch: extension to multiple controllable resources

With multiple flexible element in the mix (e.g. battery 
+ building with controllable electric space heating), 
the problem can be extended by (in brief):

• Compute one dispatch plan per each element in 
the mix [Fabietti et al., 2018].

• The aggregated dispatch plan is the algebraic 
sum of the individuals dispatch plans.

• The real-time control problem with multiple 
controllable elements is distributable (tractable) 
[Fabietti et al., 2017] [Gupta et al., 2018].

Fig.: Dispatch with batteries and flexible demand. Battery 
capacity to achieve control targets decreases for larger 
penetration of controllable loads [Fabietti et al., 2017].

20% controllable 
buildings results in 
80% reduction in 
battery capacity
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Practices for modelling and control of 
grid-connected battery systems in energy 
management applications.

3
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Anatomy of a grid-connected battery system

Battery stack DC/AC Power
Converter

Step-up
transformer

Fire extinguishing
system

Air conditioning (7 kW) and
ventilation system (0.5 kW)

Courtesy of Leclanché.

Container, 12 x 3 x 2 m, approx. 20 tons

720 kVA, 560 kWh battery system 
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Parameter Value

Nominal Capacity 720 kVA/560 kWh
GCP Voltage 20 kV
DC Bus Voltage Range 600/800 V
Cell Technology
(Anode/Cathode)

Lithium Titanate Oxide (LTO)
Nichel Cobalt Alumnium Oxide (NCA)

Number of racks 9 in parallel

Number of modules per 
rack

15 in series

Cells configuration per 
module

20s3p

Total number of cells 8100

Cell nominal voltage 2.3 V (limits 1.7 to 2.7 V)

Cell nominal capacity 30 Ah (69 Wh)
Round-trip efficiency
(AC side)

94-96%

Round-trip efficiency
(DC side)

97-99%

Example of utility-scale grid-connected battery
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Grid-connected batteries: modelling requirements

Battery stack

Fig.: Components of a grid-connected battery energy storage systems.

Models discussed in the next section, with 
focus on time constants for energy 
management applications:

Converter Lumped model of 
the cells’ stack
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Modelling for energy management – Power converter

Discharge

Charge

Voltage constant on grid side (Uac),
variable on DC bus (Udc)

Voltage constant on DC bus (Udc), 
variable on grid side(Uac)

Converter’s real capability curves (or PQ characteristics):

Converter’s capability modelled with a static circular PQ characteristic (convex), piecewise linearized, see e.g. [Nick et 
al., 2014]. Converter + transformer losses modelled with a constant coefficient (fraction of cell stack’s losses).
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Modelling the Battery’s state of charge (SOC)

1. Integral of the power over the energy capacity (brutal, especially for inefficient 

storage).

2. Constant efficiency. It can be rendered convex by expressing the power as the sum of 

2 mutually exclusive (to be verified a-posteriori!) variables [Kraning et al., 2011]:

3. When the problem is coupled to a load flow, the battery’s series resistance is a new 

line in an augmented load flow [Stai et al., 2017] (little additional complexity!).

4. Second order model to capture rate capacity effect or charge relaxation effect, see 

e.g. application in  [Fortenbacher et al., 2017].
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Modelling requirements – Battery’s voltage dynamics

Two time constant (TTC) models widely adopted to describe lumped
voltage dynamics on the DC bus as a function of the DC current.

Pros Cons
Capture dynamics quite accurately.

Tractable (linear).

Few parameters to identify.

It can be estimated from 
measurements.

Easy to apply (one variable to 
observe).

Parameters depend on:
• State of charge
• Charge/Discharge rate
• Temperature

Gives no insight into underlying 
electrochemical processes.

Fails to capture ageing 
mechanism.
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Data-driven identification of TTC models

Steps:

1. Perform experiments with pseudo random binary signal (PRBS) and 

collect voltage and current measurements on the DC bus.

2. Model formulation.

3. Parameter identification.

4. Validation (and cross-validation).

5. If performance is not acceptable. Change model and repeat.

See e.g. [Namor et al., 2018b].
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Data-driven identification of TTC models – PRBS

Fig.: Example of zero-mean PRBS signal.
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Identification of TTC models – Model formulation

Stochastic state-space model:

State vector and input (for two time constants, 
the additional state is

the battery’s state-of-charge).

State-space matrices:

Fig.: Three time constant model with parameters Rx Cx and                         .

3rd state normally needed to 
capture time dynamics in the 

scale of few seconds.

2 or 3 states vs 1 output. State 
estimation required to apply 

the model in practice.
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Identification of TTC models – Model validation

Fig.: Autocorrelation of the one-step ahead prediction errors vs 
white noise to check residual structure in the series.

One-step ahead prediction error:

Residual analysis
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- Battery’s current. Linear voltage and current constraints, cost function

in the form h(g(x)), convex if g(x) is convex and h convex non-
decreasing, thus nonconvex. Convex formulation.

Let ek be the energy throughput’s set-point for a battery. The problem is 
determining a power trajectory to achieve ek while respecting battery’s 
voltage and current constraints. [Sossan et al., 2016]. 

Two possible decision variables:
- Battery’s power output. Linear (integral) objective, nonlinear and 
nonconvex current and voltage constraints.

Example: energy model predictive control (MPC) of a battery

Battery energy throughput as a function of the battery 
DC current (convex under certain conditions see next) Set-point
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Energy MPC – Battery’s energy is quadratic in the current 

The battery’s energy throughput is the sum over time of the battery’s power output, i.e. product of 
battery’s DC current, DC voltage and converter efficiency alpha:

Battery’s DC voltage as a function of the current is from the linear TTC model:

Replacing the second into the first yields:

i.e., sum of two linear terms and a quadratic term in the current. Convex if y is SDP.

Battery DC voltage sequence

Battery DC current sequence
Battery AC energy 

throughput 

Battery system state 
(Kalman-estimated)

Phi, gamma from 
battery state-space 

matrices
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Energy MPC for a battery – A convex formulation
We use the previous result to formulate a convex problem of the energy tracking point.  It 
maximizes the current (i.e. linear cost function) subject to the energy throughput being less or 
equal to the target energy throughput ek (i.e. convex inequality).
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Energy MPC for a battery – Experimental results

Fig.: Single battery cell with energy MPC. Better 
tracking performance with no violations.

Fig.: Single battery cell with integral feedback 
control loop. Voltage constraints violations.



Dispatching Stochastic Power Flows by Distributed Control of DERs, Fabrizio Sossan | 20.10.2017 39

A side note about ageing and ageing-aware control

Fig.: Empirical assessment of battery ageing of a LTO cell 
based on laboratory tests. Courtesy of Leclanché.

Rule-of-thumb estimates (wo including path dependent aging):
- Expected life due to cycling: 55 years at 1 cycle per day
- Expected calendar life: 15 years 

Ageing-aware control policies 
should be designed according 
to the available technology. 
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Summary

1. Integration of battery storage in electrical grids. Two perspectives: 
increasing the performance at the system level, and enabling safe 
integration of renewable energies in distribution systems.

2. A framework to dispatch heterogeneous resources as a control 
paradigm for controlling battery systems and downstream flexibility à
towards self-dispatching distribution systems?

3. Anatomy of a real-life grid-connected battery storage system –
mainstream modelling practices for power converters, battery voltage 
dynamics, and state-of-charge.
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