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Abstract—We compute an optimal day-ahead dispatch plan
for distribution networks with stochastic resources and batteries,
while accounting for grid and battery losses. We formulate and
solve a scenario-based AC Optimal Power Flow (OPF), which
is by construction non-convex. We explain why the existing
relaxation methods do not apply and we propose a novel iterative
scheme, Corrected DistFlow (CoDistFlow), to solve the scenario-
based AC OPF problem in radial networks. It uses a modified
branch flow model for radial networks with angle relaxation
that accounts for line shunt capacitances. At each step, it solves
a convex problem based on a modified DistFlow OPF with
correction terms for line losses and node voltages. Then, it
updates the correction terms using the results of a full load
flow. We prove that under a mild condition, a fixed point of
CoDistFlow provides an exact solution to the full AC power
flow equations. We propose treating battery losses similarly to
grid losses by using a single-port electrical equivalent instead of
battery efficiencies. We evaluate the performance of the proposed
scheme in a simple and real electrical networks. We conclude
that grid and battery losses affect the feasibility of the day-
ahead dispatch plan and show how CoDistFlow can handle them
correctly.

Index Terms—Dispatch plan; day-ahead; optimal power flow;
grid losses; battery models;

NOMENCLATURE
PCC Point of Common Coupling.
Indices
le{l,---,N} Index of lines.
i€{1,---,N} Index of buses/nodes.
up(l), Index of bus at the top and bottom of line
[ respectively.
de{l,---,D} Index of scenarios.
te{l,---,T} Index of time.
Parameters per line [
g Direct sequence longitudinal resistance.
x Direct sequence longitudinal reactance.
b Direct sequence shunt susceptance.
1, Ampacity limit (current upper bound).
Variables per line |
Pld(t) Direct sequence active power entering from bus
up(l) at time ¢ and for scenario d.
Q(t) Direct sequence reactive power entering from bus

up(l) at time ¢ and for scenario d.
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Sld(t) Direct sequence apparent power entering from
bus up(l) at time ¢ and for scenario d.

f(t) Square magnitude of the direct sequence current
in z; at time ¢ and for scenario d.

id(t) Current entering the line from the top at time ¢
and for scenario d.

i;”d(t) Current exiting the line at the bottom at time ¢

and for scenario d.
Node parameters
b; Sum of all shunt susceptances connected to node
v,V Lower and upper node voltage magnitude bounds
for the direct sequence.
Variables per node i

v (t) Square magnitude of the direct sequence voltage,
at time ¢ and for scenario d.

pd(t) Active power injection (excluding battery power
injections), for scenario d and time {.

qd(t) Reactive power injection (excluding battery
power injections), for scenario d and time t.

sd(t) Apparent power injection at bus ¢ (excluding

battery power injections), for scenario d and time
t.
PPFP(t) Dispatched active power at the PCC at time .
QPF(t) Dispatched reactive power at the PCC at time t.

SPP(t)  Dispatched apparent power at the PCC at time ¢.
Parameters per battery connected at node i
sg,i Rated power.

Variables per battery connected at node 1

SoE% ,(t)  State-of-energy (SoE) for time ¢ and scenario
d.

SoEg ; SoE lower bound.

SoiEBJ SoE upper bound.

E’f; (t) Charging power for time t and scenario d.
pgf(t) Discharging power for time ¢ and scenario d.
g (1) Active power for time ¢ and scenario d.
qldg;i (t) Reactive power for time ¢ and scenario d.

Notation used in Section IV

pl(t) Active power correction term for line [, scenario
d and time .

e Reactive power correction term for line [, scenario
d and time t.

ﬁld(t) Voltage square magnitude correction term for line
[, scenario d and time ¢.

od(t) Approximation term for node 4, scenario d and

time t.



General notation

G N x N adjacency matrix of the oriented graph of
the network excluding the PCC.

|| Absolute value.

Il Euclidean norm.

At Dispatch plan time interval.

diag(r) Diagonal matrix of vector r whose I*" element is
.

IA]l1 Induced [y —norm of the matrix A, i.e., [|[A]; =

N
max;j=1,..,N > p—1 |4k,
Collective notation

P3(t)  Column vector of active power for all lines, sce-
nario d and time t.

Q%(t) Column vector of reactive power for all lines,
scenario d and time ¢.

v(t)  Column vector of voltage square magnitudes for
all nodes, scenario d and time ¢.

pd(t)  Column vector of node active power injection for
all nodes, scenario d and time ¢.

¢?(t)  Column vector of node reactive power injection for
all nodes, scenario d and time ¢.

s(t,d) Nodal injections for all nodes, scenario d and time
t.

p%(t)  Column vector of battery active power for all buses,
scenario d and time .

q%(t) Column vector of battery reactive power for all

buses, scenario d and time .
sp(t,d) Battery powers for all buses, scenario d and time
t.

P2(t)  Column vector of active power correction terms for
all lines, scenario d and time t.

Qd(t) Column vector of reactive power correction terms
for all lines, scenario d and time ¢.

Vd(t) Column vector of voltage square magnitude cor-
rection terms for all lines, scenario d and time ¢.

V(t,d) Approximation terms for all nodes, scenario d and
time .

E(t,d) Electrical state of the grid for all lines/nodes,
scenario d and time .

C(t,d) Correction terms for all lines, scenario d and time
t.

S Apparent power for all lines, scenarios and times.

v Voltage square magnitude for all buses, scenarios
and times.

SPP Dispatched apparent power for all times.

f Square magnitude currents flowing through the
longitudinal impedances for all lines, scenarios and
times.

Sp Batteries’ charge, discharge and reactive power for
all scenarios and times.

b Vector of b; for all buses ¢, excluding the slack bus.

Vector of reactances for all lines.

I. INTRODUCTION

The monotonously increasing deployment of distributed
energy resources, if adopted passively, can lead to raising the
costs of the investment and operation of power distribution

systems, which may ultimately affect the widespread adoption
of this technology [1]. Alternatively, distributed resources can
be aggregated into a single entity to trade electrical energy or
to provide system support services such as dispatchability or
reserve [2], [3].

Computing a dispatch plan for a distribution network with
stochastic resources and storage devices while accounting for
operational constraints and system losses involves an AC
Optimal Power Flow (AC OPF). This problem involves the
non-linear power flow equations, thus it is, as well known, non-
convex and hard to solve. There are several proposed methods
for the solution of the AC OPF that fall in three categories.
First, there are methods that apply relaxation techniques (e.g.,
[4], [5], [6], [7]) and yield exact solutions (i.e., solutions that
coincide with the one of the non-relaxed AC OPF problem),
under some stronger conditions [5], [6] or milder conditions
[4], [7]. Second, there are methods that apply approximations
by modifying the physical description of the power flow
equations, e.g., the DC load flow [8], [9] for transmission
networks and, most importantly, the DistFlow approximation
[10] that has been historically applied to radial distribution
networks. In this category, there also exist methods which
linearize the AC power flow equations around an operating
point, e.g., the load-zero point, as applied in [11], [12]. In ad-
dition, [13] adopts an iterative linearization method, where the
operating point is updated by the previous iteration. Finally,
there are heuristics, e.g., genetic algorithms [14] and non-
linear optimization methods, e.g., Lagrangian-based methods
[15], [16] that guarantee only local solutions. In [17], it is
shown that under specific conditions the dual gap is zero thus
solving the dual problem leads to the global optimal solution.

The relaxation methods [4], [5], [6] do not account for
the shunt capacitors of the equivalent two-port 7 line-model,
which leads to a solution that might drive the grid to operate
into a technically unfeasible point [18]. In [7], the proposed
relaxation method takes into account the shunt capacitors,
along with considering realistic assumptions with respect to
the bounds of the control variables. In this paper, we leverage
on the DistFlow approximation that has similar assumptions
as [7] but ignores the active/reactive power losses on the
longitudinal impedance of the equivalent two-port 7 line-
model.

Several recent papers tackle the AC OPF problem in mul-
tiphase unbalanced power grids, e.g., [19], [20], [21], [22],
[23]. In [19] and [20], semidefinite programming relaxation is
adopted, while [21] proposes a distributed optimization, based
on the alternative direction method of multipliers (ADMM)
and semidefinite relaxation. The approach of [23] is based
on ADMM, for the OPF solution in unbalanced radial grids,
where the ADMM subproblems are reduced to either a closed
form solution or an eigen-decomposition of a 6x6 Hermitian
matrix. An iterative algorithm is proposed in [22] applying
successive convex approximation starting from feasible points,
which are determined via another preceding iterative algo-
rithm. Furthemore, the linearization method proposed in [11]
can be also applied in multiphase unbalanced power grids.

The uncertainty of the loads and stochastic generation can
be handled by means of robust optimization [24], chance-



constraints [11], [13] or scenario-based optimization [25].
Robust optimization represents uncertainty by intervals and
usually minimizes a worst-case value of the objective function,
while requiring that the constraints hold for all the values
of the uncertain parameters within the considered intervals.
Chance-constraints reduce the conservativeness of the robust
optimization by requiring that the constraints involving uncer-
tain parameters are satisfied with a specific probability. How-
ever, they are more suitable for linear constrained problems
[9], [13], [25], otherwise they become hard to approximate
and usually samples (i.e., scenarios) are used for this approx-
imation e.g., [11], [25], [26]. The scenario-based approach
uses realization scenarios of the uncertain parameters derived
e.g., from past measurements in combination with predictions
[3], [27], requiring the satisfaction of the constraints for
every scenario. It renders the uncertainty easier to handle
in the problem formulation, and allows for general convex
constraints. Note that for an appropriate choice of the number
of the scenarios, the solution of the scenario-based problem
is a feasible solution of a corresponding chance-constrained
one [25] (with a confidence level). These methods have been
applied to the unit commitment problem [28], [24] under
uncertain resources and to the OPF problem, in several cases
with renewable generation and storage, [3], [27], [29], [11],
[13]. Based on the above discussion, we apply scenario-based
optimization, which, according to [30], models appropriately
the uncertainty of stochastic resources while representing any
existing time correlation structure.

We propose a generic iterative scheme, denoted as Corrected
DistFlow (CoDistFlow), for solving a scenario-based AC OPF
in radial networks with stochastic resources and controllable
batteries, aiming to compute a day-ahead dispatch plan at
the PCC, by accounting for both grid and battery losses.
The scheme is based on the branch-flow model for radial
networks with angle relaxation, which is able to account for
the presence of line shunt capacitances [7]. It consists of two
modules executed sequentially at each iteration until conver-
gence. The first module is called Improved DistFlow (iDF).
It solves a convex problem using the DistFlow approximation
but with appropriate correction and approximation terms for
losses and voltages, mimicking the optimization terms in the
non-linear power flow equations ignored by DistFlow. The
second module solves appropriate load flow (LF) problems
for computing the correction and approximation terms with
inputs the battery trajectories obtained via iDF in the previous
iteration. We prove that, under mild assumptions, a fixed point
of CoDistFlow (i.e., after convergence in the limit) is a solution
of the exact power flow equations and satisfies the exact
operational constraints. The numerical evaluations illustrate
that convergence takes place in few iterations. Regarding the
realistic behavior of batteries, we propose to treat their losses
as those taking place in the longitudinal resistance of a line.
To do that, we use the AC single-port circuit equivalent
of the battery. Then, CoDistFlow treats the battery losses
similarly to the non-linearities of the power flow equations.
Importantly this modeling of the battery allows for an exact
relaxation of the non-convex battery constraint applied to avoid
its simultaneous charging and discharging. We evaluate the

proposed scheme in a 4-bus network and in a real grid. As
main outcome, we show that not considering the grid and
battery losses could lead to a failure of the dispatch plan
in realistic scenarios. Furthermore we perform comparative
evaluations with an iterative algorithm that linearizes the AC
power flow equations around an operating point, illustrating
the advantages of CoDistFlow. Importantly, CoDistFlow is
a method of independent interest for solving any AC OPF
problem (e.g., even non scenario-based or without battery
storage).

In general, compared with similar works in literature:

o CoDistFlow computes a day-ahead dispatch plan at the
PCC by appropriately accounting for both grid and bat-
tery losses. It is shown that non-considering the grid
and battery losses may significantly impact the mismatch
between the dispatch plan and the actual realization at
the PCC for a realization of the uncertain prosumption.
CoDistFlow demonstrates to properly handle this aspect.
To the best of our knowledge this is the first work in
literature showing such results.

o Compared with other linearization algorithms in liter-
ature, CoDistFlow linearizes the power flow equations
based on DistFlow and then it iteratively corrects the
linearization using feedback from the previous iteration
on the line losses and node voltages that can be computed
very efficiently via load flow. Most of the linearization
methods in literature linearize the power flow equations
around an operating point using the Jacobian matrix.
Then, they correct the linearization by updating the
operating point using the optimal solution of the previous
iteration, which is not always efficient as it is shown
in our results. The linearization methods of [11], [12]
are performed only once around the load-zero operating
point. Furthermore, the iterative linearization of [13] is
applied only in order to simplify the chance-constraints
for the voltage and the current and not to solve the
AC OPF itself. An advantage of CoDistFlow is that it
converges in only few iterations (shown via simulations),
while at a fixed point, the derived electrical state of
the grid is proven to satisfy the exact AC power flow
equations and the exact operational constraints.

o Thirdly, CoDistFlow applies scenario-based optimization
which renders the uncertainty easy to handle in the
problem formulation and, more importantly, generic in
its distribution (e.g., non-Gaussian), while it allows for
general convex constraints. By requiring the satisfaction
of all the constraints by all the scenarios, if an appro-
priate number of scenarios is considered, it provides a
feasible solution to a corresponding chance-constrained
problem that applies probabilistic (chance) constraints
for all constraints types, e.g., voltage magnitude, current
magnitude, battery state-of-energy, power factor, contrary
to related papers in literature applying chance-constraints
only for specific types of constraints e.g., [11], [13], [9].
Also, we show that the existing relaxation methods for
solving the AC OPF yielding exact solutions, e.g., [4],
[7], do not apply in case of scenario-based optimization
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Fig. 1: Notation for the m model of a line.

and CoDistFlow is proposed as a solution to this issue.

« Finally, CoDistFlow can efficiently handle a more real-
istic battery model without impact on its computational
complexity, as explained above.

The paper is organized as follows. Section II introduces
the assumptions on the system model, the battery models
and formulates the problem under consideration. Section III
explains why current relaxation techniques yielding exact
solutions are not compatible with scenario-based optimization.
Section IV presents and analyzes CoDistFlow, and Section
V presents the evaluation and comparison results. Finally,
Section VI discusses possible extensions of CoDistFlow and
Section VII concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Assumptions

We consider a balanced and transposed radial distribution
network where the PCC, between the local distribution net-
work and the upstream power grid, is at index O and it is
assumed as the slack bus with vd(¢) = 1pu, V¢, d. Distribution
lines are represented by their single-phase direct sequence
equivalent 7 models (Fig. 1). The node at the top of line
[ (i.e., electrically closer to the PCC), is denoted as up(l),
and the node at the bottom as [. The adjacency matrix G is
characterized by Gy, ; = 1 for two buses k, ! # 0, if k = up(l),
otherwise G,; = 0. Also let us consider that, for every battery
system, p'3 (1), iy (1) = 0, with p ; (1) = p§ (1) = s (1)
and (7 (1)) + (035 (1)% + (a5 4(1)* < (s5.)*

In the following, we formulate the scenario-based AC OPF
for a radial distribution network with intermittent renewable
energy sources and battery storage. This formulation refers to
a general radial distribution network where PCC lies at the top
of the line [ = 1.

B. Power Flow Equations & Constraints

Here, we provide the power flow equations for the branch-
flow model using the so-called “angle relaxation” [6] with
transverse elements [7]. The DistFlow approximation is based
on the angle-relaxed AC OPF [10], in which, the power flow
equations, along with the corresponding voltage and current
constraints, are expressed without using the voltage (and
current) angles. Note that, in case of radial (tree) networks,
the angle relaxation [6] is just a bijective change of variables.
Thus, the angles can be recovered as shown in [6] and the
solution of the angle-relaxed problem is also a solution of the
non-angle-relaxed AC OPF. Next, we provide the constraints
of the considered AC OPF divided in specific categories.

a) Power Flow Equations defined Vt,d,l:

P(t) = Z P(t) +pi(t) + phy () + mfi (1), (D)
kGM 1
= Y Qi+ +ag () @
k:Grr=1
*(ng(z)(t) + ol (0)bi/2 + 2 f(),
d d -Uﬁp(l)(t)bl ’ d
Ji@) = |57 (@) ti— 5 — [Vap() (1) 3)

b) Voltage Constraints, defined Vt,d, 1, 1:

o (1) = ol (1) — 2R { (sl (1) + ol >’”)} @
L

vipy (8) = 1, v* < wf(t) <7°. (5)
c) Power Factor Constraints at the PCC:
|PE@I/IST @) > cos(¢)min, V2, d, (6)

where cos(¢)min stands for the minimum allowed power
factor.
d) Ampacity Constraints, defined Vt,d,l:

. PA(t) Qi(t)
R{if (1)} = ——=——, J=—F——
l \/ Yy () \/m
R{PAUE)Y = (PAE) — i fi @)/ oit),  ®
%{i”’d( )} =S{if(t )} ©)
+(vd ) t) 4 vil(t b mlfl
up(l) 2\/%7 \/r
lif @) < T, P @)l < T (10)

e) Battery Constraints, defined Vt,d, i:

S(t+1) =SoB% (1) + (mph i (t) — mapgf (1) AL, (11)
apSoEg ; < SoE% ;(t) < (1 —ap)SoEp,;, (12)

(PET ) + (ppd (1)) + (qh . (1)* < (s5 )%, (13)

P (pgd(t) =0, (14)

where 77, 12 will be determined based on the battery model
under consideration (see Section II-E) and 0 < ap < 1lis a
constant parameter used to define a margin on the SoE limits.
The constraint of Eq. (14) serves the purpose of avoiding the
simultaneous charge and discharge of the battery.

The formulated problem is non-convex due to the con-
straints of Egs. (3), (7)-(10), (6) and (14). In the following, (6)
will be replaced by a convex soft constraint that provides more
flexibility in terms of finding feasible solutions. Also, (14)
can be accounted by appropriately augmenting the objective
function (this aspect is discussed in Section II-F). The first
two constraints’ sets are therefore the main reasons for the
non-convexity of this problem formulation.

SoEdB



C. Initial Objective Function

The objective function is defined such that the optimal
solution trades-off the following five objectives. First, there is
a penalty on the state-of-energy of the battery, qS(SoEdB’i(t));
it expresses the preference that SoE%ﬁi(t) € [Ep ;. Ep ], with
Ep, > @B,i and ﬁg,i > EB,Z-. This serves the purpose
of reducing the battery deep of discharge and limiting the
battery degradation, along with introducing more flexibility
for handling uncertainties in the real-time operation that are
not accounted for in day-ahead via the scenarios. Specifically,

$(SOE% ,()) = max (EB — SoE% ,(#), 0, SoE% (1) — EB)
15)
The second objective minimizes the reactive power at the
PCC (|Q4(t)|) that serves the purpose of maximizing the
power factor at the PCC for every scenario [31]. The third
objective minimizes the active power exchanged with the
upstream power grid. The fourth goal is to maximize the
power export to the main grid. The fifth objective relates to
the error between the obtained dispatch plan and the optimal
power at the PCC for every scenario. This is a crucial objective
for determining a dispatch plan such that all the considered
scenarios of the uncertain parameters will be able to follow
in real-time by using the batteries. The individual objectives
are weighted by the positive constants w;, i = 1,...,5%
Finally, the objective function is a weighted average over all
scenarios, where the weight A\ is the probability of occurrence
of scenario d, with Zd Ag = 1. Thus, the initial version of
the objective function to be minimized is:

w1y Aab(SOE ; (1)) +wa Y Al @ (1)] +ws Y Aa| P (1)

d,t,i d,t d,t

+wy Yy AP () +ws Yy AallST(E) = SPF ()]
d,t

d,t
(16)

In order to remove the non-linearities of the penalty func-
tion ¢(.) leading to an equivalent problem formulation, we
introduce the slack optimization variables E}é’i(t) and (i) we
replace the term w1, )\qu(SoEjlg’i(t)) in the objective
function (Eq. (16)) with w; Zd,m )\dEj_—l),yi(t), (ii) we add the
following battery constraints, Vi,d,,:

Ep,;— SOE%,i(t) < Ef (1), (17)
0< ER,(t), (18)
—Ep,i + SoE% ;(t) < Ef ;(t). (19)

Note that, in a similar way, we can remove the non-linearities
of the objectives weighted by wy and ws, which is not
presented here for the ease of presentation.

In the following, we further enhance the objective function
for the purpose of relaxing non-convex constraints.

'The weight values are assigned based on the importance of each individual
objective. Specifically, we should assign ws > 0 and high enough so that the
derived optimal dispatch plan will be followed in the real time operation (e.g.,
if participating at the market with our feeder as the dispatchable resource).
Also, based on the discussion above, we should assign w; > 0 and w2 > 0.
Finally, ws — ws can be interpreted as the price received when exporting
power to the upstream power grid and w3 + w4 as the price paid when
importing power to the local distribution grid by the upstream grid.

D. Soft Power Factor Constraint

In this section, we replace the hard power factor constraint
of Eq. (6) with a soft and convex constraint form. The latter is
essential as the network acts as a prosumer, thus the dispatched
active power at the PCC could take zero values for some time
intervals, leading to infeasibility under a hard constraint.

Let us introduce the  optimization  variables
PTA(t), P~4(t), Vt,d. In the objective function (Eq. (16))
we add the term we Y 4, Ad ((PJ“d(t))2 + (P‘?d(t))Q),
where wg > 0 weights the importance of satisfying the power
factor constraints. Also, instead of the constraint of Eq. (6),

" we add the following set of constraints, V¢, d:

PHA@) + PAt) > QF(t) tan(m/2 — ¢r), (20)
Pt + P4t > —Q1(t) tan(m/2 — ¢pm), (21)
Pi(t) = PH4(t) — P~4(t), PTAt) >0, P7%t) >0, (22)

where ¢,, is the phase-shift corresponding to cos(¢)min. The
solution subject to the above set of constraints might not
satisfy Eq. (6), when the problem is not feasible subject to
Eq. (6) or when the rest objectives are more important for
minimization purposes (e.g., when wg is small). The former
may be the case when the active power at the PCC takes
values close to zero, i.e., in presence of distributed renewable
energy sources. In this case we may not be able to obtain
an optimal dispatch plan under Eq. (6), while on the contrary
there is a solution if adopting the above relaxation. Under
feasibility, the satisfaction of Eq. (6) can be enforced by
assigning higher values to the weight value wg, compared to
the rest of the weight values. In addition, the second summand
of Eq. (16) aims at maximizing the power factor at the PCC
(by minimizing the absolute value of the reactive power at the
PCC) which further enforces the satisfaction of Eq. (6) in case
of feasibility. The following result is shown:

Proposition 1: Assume that w; = 0,Vi # 6, the optimal
solution of the problem of minimizing (16) subject to (1)-
(5), (7)-(14), (20)-(22) (and also the optimal solution of the
problem defined in Section II-G), satisfies Eq. (6), if this
problem is feasible subject to Eq. (6).

Proof: The satisfaction of the soft constraints (Egs. (20)-
(22)) with either P*4(t) > 0 or P7%(t) > 0 is equivalent to
the satisfaction of Eq. (6). To make this clearer, from Fig. 2,
we observe that Eq. (6) is equivalent to

|Pi(t)]
00| > tan(m/2 — dm), (23)
i.e., to
|P(1)] > Qi (t) tan(r/2 — ¢,,) and
|P{(t)] > —Q4(t) tan(m/2 — ¢yn). (24)

We write Pi(t) = Pta(t) — P~4(t), with PHa(t) >
0, P=4(t) > 0. Then, if either PT4(¢) > 0 or P74(t) > 0,
the previous two inequalities become the Egs. (20)-(21). This
is also the choice of P+4(t), P~4(t) (either PT%(t) > 0
or P=%(¢) > 0) that minimizes the objective function with
w; = 0,Vi # 6 (optimal solution), since PT-%(t), P~%(t) ap-
pear only in constraints (20)-(22). This proves the proposition.
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Fig. 2: Illustration used for the derivation of the soft power
factor constraint.

E. Modeling of Lossy Batteries

In order to account for battery charge and discharge losses,
an efficiency-based model with constant efficiencies is con-
ventionally used [3]. This model is very accurate for constant
power-exchanges, but less accurate when the exchanged power
is variable. As an alternative, a resistance-based model can be
used and can be easily included in our problem formulation.
Note that, we do not model the self-discharge of the battery as
it is negligible for the time-scale of interest [3]. For simplicity,
let us denote the active power injected into the grid as p}; and
pp (for charging and discharging respectively), whereas on
the battery side, pjc and p,_, with same interpretation. Both
models are presented next.

1) Conventional Efficiency Model: The conventional model
states that pj, = mpp  (m < 1), pg, = mpp (12 > 1),
where n; and 7, are the directional charging and discharging
efficiencies respectively. Several approaches can be used in
order to evaluate 77 and 7». The common practice is to assess
them experimentally, by computing an average efficiency in
a wide range of operational conditions. It is also typical to
consider that battery losses are symmetric, namely, 1172 = 1.

2) Resistance Model: First, we assume that all losses in the
battery can be represented by a single resistance. Furthermore,
we assume that the internal losses of the battery pack are more
important than those of the power converter. Then, the battery
can be represented by an ideal storage (7, = 1, 72 = 1)
with injection pg. in a virtual node that is connected to a
purely resistive line (no shunt elements). As the reactive power
is entirely product of the power conversion, the equivalent
injection, (, is connected at the real node as shown in Fig. 32.

This simplification enables us to directly integrate this
equivalent model into the admittance matrix of the system
(increasing its dimension by the corresponding number of
batteries in the grid), thus without affecting the problem
computational complexity. Specifically, the non-linearity in-
troduced by the additional resistive line in the AC OPF will
be treated similarly to the non-linearities of the power flow
equations at every other line (Section IV). Note that, we
impose neither ampacity constraints to this line, nor voltage
constraints at the virtual node.

As with the efficiency model, the value of Rp can be
assessed experimentally. Here, we assess both models’ param-
eters from an accurate TTC-model presented in [3].

’Note that a more generic model would simply include an additional
resistance that models the power converter losses.

. Pde PB
ideal - Rp |
battery A =
([EF H—ww
{ I ~
NS .
=A- virtual real

Fig. 3: Battery equivalent resistance model.

F. Relaxation of the Constraint of Eq. (14)

In this section, we propose the enhancement of the objective
function (Eq. (16)) by an extra linear term, in order to alleviate
the non-convex constraint of Eq. (14). Specifically, we add
the term w7, Ad(PE:f;l(t) + pgfl(t)) in Eq. (16), with
wrz > 0, and we remove the constraint of Eq. (14). After
all the proposed relaxations and equivalent modifications, the
objective function is written as:

wi Y AaB () +ws Y AalQF ()] +ws Y Aal P (2)] (25)

dti dt dt
+wa Y AP +ws Y AallST(E) — SPE ()P
d,t dt
s Y A (PH(0)” + (P(1)°)
d,t

+wr Yy APl (1) + pEi (1))
d,t,i

Theorem 1: If w7 > 0 and the resistance model is applied
for the battery, then in the optimal solution of the problem
defined in Section II-G the battery charge and discharge power
values (pE:?(t),p;f(t),W,d, t) satisfy the constraint of Eq.
(14).

Proof: The proof is by contradiction. Consider an optimal
solution, and assume that pEZ’Z(t) > 0, pyi(t) > 0, for
some time ¢, scenario d and node i. Also, assume for the
moment that p};'% () > pj’?(¢). Then, according to the battery
resistance model, the po{ver injected into the virtual line
connecting the battery to the grid is de,i(t) = pg’j(t)—pg’?(t)
and the change in the corresponding battery’s state—of—enérgy
is equal to ASoE% ,;(t) = p% () At.

We now build another feasible solution which is identical to
the optimal solution except for ﬁ;g,:f(t) = pgf(t) - png(t) >
0 and p]}’j(t) = 0. This solution leads to the same power
injected into the virtual line connecting the battery to the
grid and the same battery state-of-energy as the optimal one,
therefore it is feasible. Note that it also satisfies the constraint
of Eq. (13) since the latter is satisfied by the optimal solution.

Furthermore, the difference in cost incurred by considering
pE(t), ppi (1) instead of 51¢ (1), s () is wrka(phs (t) +
PR () — PEi(t) — ppi (t) = 2wrAapp’s (t) > 0. Thus, this
new feasible solution has a lower value of the objective, which
contradicts the optimality of the original solution. The case
0< png(t) < p;f(t) is handled similarly with ﬁg’j(t) =0
and 57 (t) = pp'i (t) = P (1) > 0.

Remark 1: The above theorem is not true when the conven-
tional efficiency model is applied for the battery. Specifically,
in this case, it may happen that both png(t) > 0 and
pgz‘ij(t) > 0 in the optimal solution, when the battery state-
of-energy is close to its hard upper bound, (1 — ap)SoEg ;.



Using the same battery charge and discharge power values
as in the proof of Theorem 1, pg’j(t),p;:f(t) will lead
to a change in the corresponding battery’s state-of-energy
equal to ASoE},,(t) = (mphi(t) — mapp (1)) At, while

f)g’?(t),f)gf(t) will lead to a change in the corresponding

battery’s state-of-energy equal to AS~0EdByi(t) =m (pg’j(t) -
p;’?(t))At > ASoEdBﬁi(t). Therefore, only in the case that the
batytery’s state-of-energy is close to its hard upper bound, the
latter battery power values may render the solution infeasible
in terms of the battery constraints, and the former battery
power values may be chosen at the optimal solution.

However, in case of the conventional efficiency battery
model we relax the non-convex constraint of Eq. (14) in the
same way as for the resistance model, since due to the penalty
function, ¢(SOE%7i(t)), weighted by w; in the objective func-
tion, it becomes less probable that at the optimal solution the
battery’s state-of-energy will be close to its hard upper bound.
In the latter case, ¢(SOE%7i(t)) becomes non-zero, increasing
linearly with the distance of SoE%}i(t) from its preferable
upper bound, Ep ;. For the conventional efficiency battery
model, it is also assumed that wr > w;. If the latter is not true,
[)E’j(t), ﬁg:?(t) may induce a higher cost than pgf (t),p];:;i(t)
when the battery state-of-energy is close to its preferable upper
bound EB,Z-, and thus the latter will be chosen at the optimal
solution.

Note that the above issue does not happen when the
battery state-of-energy is close to its hard lower bound,
aBSoiEBJ. Indeed, let us assume that at the optimal solu-
tion, p;f(t) > 0, pgf(t) > 0 for some time ¢ at node
¢ and scenario d. Also, assume that pgf(t) < pgf(t).
Then, ASOE%7i(t) = (nlpjg:f(t) - n2p§:?(t))At. We define
Ppi(t) = —ppi(t) + ppi(t) > 0 and pj5(t) = 0. Then,
ASOES ,(£) = na (i (t) — py (1)) At > ASoE%, ;(¢). Thus,
if a solution is feasible for pgf(t),pgf(t), it will be also
feasible for ﬁ;f(t),ﬁgf(t) which reduces less the battery’s
state-of-energy and induces a lower cost in the objective
function, contradicting the fact that pg’j(t) > 0, pl;i?(t) >0
is optimal at time ¢ for scenario d and bus .

Remark 2: The analysis in this section indicates an impor-
tant aspect of choosing the resistance model for the battery,
since it allows the exact relaxation of the non-convex con-
straint of Eq. (14), while it is also handled very efficiently by
our proposed algorithmic solution of the scenario-based AC
OPF in Section IV as explained in Section II-E2.

Remark 3: The penalty term w7 -, , ; )\d(png(t)+p§f(t))
can be used to serve two goals: (i) it makes the relaxation of
Eq. (14) exact with the battery resistance model and (ii) it
penalizes the number of battery charge or discharge cycles
[32]. As a result, if applying the resistance model for the
battery, w7 can be assigned a very small positive value if one
does not aim to penalize battery cycling or a larger positive
value in the opposite case.

G. AC OPF Problem Formulation

The non-convex AC OPF is formulated as follows:

min_ (25), (26)
S,SB,U,SDP,f
s.t. Vt,d, I,

We handle two versions of problem (27), one per each
battery model (Section II-E). For the efficiency battery model,
we assign n; < 1, o > 1, while for the resistance model we
assign 171 = 19 = 1 and one additional line per battery in the
grid, by using the equivalent model of Fig. 3.

H. Determination of the Number of Scenarios

In this section, we study the number of scenarios, D, that
should be included in the optimization problem of Egs. (26)-
(27) aiming to achieve a target upper bound for the probability
of constraint violation by the optimal solution at a random
realization of the uncertain parameters. For this purpose, we
will introduce an abstract formulation of our optimization
problem. Let u € R?T denote the collection of global control
variables (i.e., the dispatch plan), = the collection of control
variables that depend on the scenario (i.e., S,Sg,v, f), and
w € W C R?*TN the uncertain parameters (i.e., the nodal
injections for all times). We define an indicator function as
H(u,w) = 1 if there does not exist an = such that all the
constraints of Eq. (27) are satisfied for w and a realization of w
and H(u,w) = 0 if there exists an x such that the constraints
are satisfied. Also, let wi.p = {w; : ¢ € {1 : D}} be the
set of scenarios (i.e., realizations of the nodal injections), and
define Uy,,, = {u : H(u,w;) = 0,Vi € {1 : D}}. Let also
f(u) = E[f(u, x)] be the objective function of Eq. (26) where
E[.] denotes the expected value. Then, since we will apply the
analysis of [25], following its requirements for linear objective
function and convex constraints, the optimization problem of
Egs. (26)-(27) is expressed as:

IBi;l y, st f(u) <y, u€Up,,- (28)
Then, we define the set U(e) = {u : P(w € W, H(u,w) =
1) < €}, where € € (0,1), a desirable probability of (a single)
constraint violation. We want to determine the number of
scenarios, D, such that the solution (u*,y*) of the problem
(28) is also a solution of the problem (29) that follows, with
a confidence level 1 —a >0, a € (0,1):

min y, s.t. f(u) <y, u€U(e). (29)
u,y
According to [25], given «, e, if
2 1 2 2
D>"Im—+2n+m?, (30)
€ « € €

where n is the number of control variables u plus one (for the
extra optimization variable y), i.e., 271"+ 1, then,

PP (P(w € W, H(u*,w) =1) <€) >1—a, (31)

where PP = P x P... x P, D times, is the probability of
selecting a bad set of D scenarios that will not lead to a v*, y*
being a solution of the Problem (29). Note that Eq. (30) is



probability independent and applies also in the case that the
scenarios derive from observations.

Following the above, in this work based on desired values of
« and €, we use Eq. (30) to determine the number of scenarios,
D, that should be considered in problem (28). Since for low
values of ¢, D attains a large value, in order to handle the
emerging computational complexity issues, we have performed
scenario reduction. Our scenario reduction method is based
on the concept of probability distance and follows the lines
of the methodology in [33], using the Chebyshev distance
to determine the similarity of two scenarios. According to
this methodology, the reduced set of scenarios lies close in
probability distance to the initial set including all scenarios.
Such a scenario reduction methodology is applied also in [34]
for stochastic variables of electrical systems. In Section V, we
provide details on the numerical values assigned to «, €, D
and the number of scenarios applied after reduction.

Since the bound on the probability of violation obtained
above tends to be loose, and since we perform scenario
reduction, we compute a refined estimate of the probability
P(w € W, H(u*,w) = 1) a-posteriori, using Monte-Carlo
and applying the Theorem 2.2.4 of [35]. Specifically, given
(u*,y*) solving the problem (28) and for D random samples
of w € W, we compute the empirical number of scenarios
that failed at least one constraint: z = 37 | H (u*, w;). Then,
based on the Theorem 2.2.4 of [35] we can compute the
confidence interval [L(z),U(z)] at level 1 — & € (0,1) of
P(w € W, H(u*,w) = 1). One special case refers to z > 6
and D — z > 6 where the normal approximation gives:

pe~ 5 - (1-5),

D D D

1 n z
Ulz)m =+ = 1——= 32
=+ b (1-5) )

where No1(n) = 5.
A second special case is when z = 0, where the confidence
interval of P(w € W, H(u*,w) = 1) is [0,U(D)] with

1

. a\ D
D)y=1-|—-
o0)-1-(5)
1 2 1 ~
= —log <~> +o0 <~> for large D.
D a D

If o« = &, we characterize the scenario reduction methodol-
ogy as effective if U(z) < e. In addition, if U(z) < ¢, then the
upper bound on P(w € W, H(u*,w) = 1) becomes refined
a-posteriori.

(33)

IIT. NON-APPLICABILITY OF EXISTING RELAXATION
TECHNIQUES

The relaxation techniques used in literature, mainly relax the
equality of Eq. (3) into an inequality, turning the problem into
a convex one. As in this paper the battery (i.e., considered
as a controllable resource) is constrained, we focus on the
problem formulation of [4]. Also, for the purposes of this
section, we do not consider upper bounds on voltage values
and ampacity constraints (Section II-B), and we assume zero

shunt capacitances for all lines, as indicated in [4]. However,
even under this less restricted problem formulation compared
to Section II-B, we can make the following observation.

Observation 1: The relaxation method of [4] for convexify-
ing the AC OPF problem with constrained controllable loads is
not, in general, compatible with scenario-based optimization.

The basic idea behind this observation is that, due to
the inequalities that replace the equalities of Eq. (3), the
optimization variables f{(t) could serve as slacks for the
satisfaction of the rest of the constraints for the multiple
scenarios. Thus, the optimal solution might be inexact, i.e.,
it might not satisfy Eq. (3) for every scenario as required
in Section II-B. We provide an example that supports our
observation using the problem formulation adopted in [4]; it
is adapted to the scenario-based optimization and the notation
of this paper. Let us consider a network consisting of one line
(N = 1), only two scenarios and one time instance, thus, for
the ease of presentation, we eliminate the index of time along
with the battery capacity constraints. The considered problem
in this example is the following:

s Mg 2 QU £ s NP 34
s.t.Vd € {1,2},

P{ =pl +pp ., +riff, (35)

Qi =qi + g%, +arfl, (36)

P} = p? = pPP, (37)

Q1 =Qi=Q"", (38)

vl =1-2(r P+ 2:Q9) + || 21|21, (39)

fit = IISflII2 (40)

(5D + (e ) + ( ) < (sE, ) : (41)

=1,0"<wv (42)

where p¢,q¢, d = {1,2} are given load quantities. We have
further imposed the constraints (37)-(38) (i.e., we require that
the error quantity weighted by wj in the objective function (16)
will be zero). Note that, if we include the part of the objective
function (16) weighted by ws instead of the constraints (37)-
(38), the new objective will not increase with the losses, thus
the relaxation of [4] does not apply. Then, the constraints (37)-
(38) may render the existing relaxation techniques inexact for
the scenario-based optimization, as it is explained below.

According to [4], Eq. (40) will be relaxed as fld >
1S¢N1%, d = {1,2}, leading to a convex problem formulation.
In this case, it is shown in [4] that for a single scenario,
the optimal solution of the relaxed problem is an exact
solution, i.e., it satisfies Eq. (40). In our example we show
that for scenario-based optimization, there exists a scenario
d for which fi* > ||SPF*||? (where * indicates the optimal
values of the relaxed problem), and for which the optimal
solution is not exact as it does not satisfy equality (40) of
the non-relaxed problem. Note that, in our example, the mild
conditions demanded by [4] for the exactness of the solution
are satisfied for every scenario. Obtaining an exact solution by
the relaxed problem means that fi* = f2* = || SPF*||2. This



means that for the active power, we should compute battery
power control pB 1, V.d={1,2} so that

_ pbP+ _ d

pi =il ST,

pEL = (43)

and similarly for the reactive power. However, due to the
upper bounded battery power control values, the satisfaction
of Eq. (43) may not be feasible for both scenarios. Then,
the relaxed problem formulation uses the relaxation of the
Eq. (40) leading to f{~ > ||SPP*||? and/or f2~ > ||SPP*|?
and rendering non-exact the solution of the relaxed problem.
Thus, the relaxed problem will lead to a solution, but this
solution will not correspond to the one of the non-relaxed
problem, contrary to the case of solving based on only one
scenario.

We assign numerical values (in pu) to further illustrate our
observation. Spec:1ﬁcally, sB 1= () 01, z; = 0.3458+50.0067,
v = 0.9 and p} = 00160 p? = 0.0418 with a power
factor equal to 0.95. Then, the optimal solution of the relaxed
problem gives fi~ = 0.0483, f" = 0.0012, PPP* = 0.0323,
QPF* = 0.0137. Thus, f{* > ||SPF*||? whereas f¥* =
|SPF*||2 due to the battery constraint of Eq. (41).

IV. THE CODISTFLOW SCHEME

In this section, we propose CoDistFlow, an iterative al-
gorithm for approximating the solution of the non-convex
scenario-based AC OPF formulated in Section II-G. The
algorithm leverages on the DistFlow approximation, introduc-
ing appropriate correction and approximation terms at every
iteration. We call this new approximation “Improved DistFlow
(iDF)”. DistFlow convexifies the AC OPF by considering that
losses in the lines’ longitudinal-impedances defined by the
quantities r;f{(t) of Eq. (1) and x;f{(t) of Eq. (2), are
neglected (i.e., Eq. (3) is not applied), thus also misestimat-
ing the operational margins with respect to the voltage and
ampacity limits. The iDF module introduces the corrections
pe(t), ¢l (t) that replace 7, f(t) and z; f{(t), respectively, and
also 9f'(t) used to mimic the voltage constraint of Eq. (4).

Then, new correction and approximation terms are computed
by solving a full AC load flow, taking into account the
newly computed battery trajectories. The algorithm terminates
when the variations of the correction terms, of the voltage
approximations and of the battery trajectories between the last
two consecutive iterations are smaller than an error tolerance
€. > 0, ¢, > 0, and eg > 0, correspondingly. Note that,
s(t,d) is considered known and constant for each time ¢
and scenario d. Also, we differentiate between the electrical
states derived by iDF and LF by utilizing a / symbol for the
former. When the algorithm terminates, the obtained solution
satisfies the exact (AC) power flow equations and the exact
operational constraints within the tolerance bounds imposed
by the convergence criterion (see also Theorem 2).

Algorithm 1: CoDistFlow

1 k = 0; convergence = false;

2 00 =0, VO =1;

3 while convergence = false do

o | [sPP®) E'® 0] —iDF(s, k), 7))

5 for each time t and scenario d do

6 [E(k'“)(t d), CE D¢, d), VED (¢, d)] =
L LE(s (¢, d), s(t,d))

7 if k> 1 and

8 Sup; 4 C'(»k-H)(t d) — C'(k)(t d)’ < €. and

9 sup, g, |0r 1 (t,d) — 00 (¢, d ﬂ < €, and
e P d) — pE T a)| < d

10 SupP; q,¢ pBrL( ’ ) sz ( ’ ) €p an

1 SUP; g, qgf)z(t d) — (k 1)(t, )‘ Se€B

12 then

13 L convergence = true;
u | k< k+1

s return SPP (k1)

-

Also, iDF approximates the voltage magnitudes, \/ vf(t), in
the denominators of the ampacity constraints of Egs. (7)-(10)
by constants #¢(t), overall keeping the problem convex. The
values of the corrections and approximations are obtained by
solving load flow (LF) problems.

CoDistFlow operates as follows (see Algorithm 1). At iter-
ation k, iDF (Section IV-A) takes as inputs (i) the corrections
terms for losses and voltages C, whose j-th element is C,
(ii) the approximations for voltages V and (iii) the constant
load injections s(t, d), with

C(t,d) = [P?
s(t,d) =

(1); Q4(t); V4,
[’ (t); ¢ (1)),

and outputs (i) the optimal dispatch-plan at the PCC, PP, (ii)
the electrical state of the grid E’ and (iii) the battery power
trajectories sp, with

E'(t,d) = [P?
SB(t, d) =

(44)
(45)

(46)
(47)

A. Improved DistFlow (iDF) Module

The iDF module is given as [SPF E’, sp] = iDF(s, C, V).
It solves a similar optimization problem as Section II-G, but
with the following differences. First, it applies the DistFlow
approximation, and second it corrects the DistFlow approxima-
tion via the correction and approximation terms, as previously
described in the introductory part of this section. Therefore,



the convex scenario-based AC OPF solved by iDF is:

min  (25), s.t. Vi, d,l, (48)
5,55,0,5PP

(5), (10) — (13), (17) — (22), (49)
o) vzpm(t)m{zl*( 1) + ot 0 )} (50)

—I—vl (1),
Z PE(t) + pi () + ph(8) + (), (51)

kle 1
= Z QL) + ¢ (t) + ab 1 (1) (52)
k:Gra—1
— (v (8) + 0 (£)bi/2 + G (1),
. P . Q(t)

R{if (1)} = m» S{if (1)} = ﬁ» (53)
R{i (0} = (P - p{(0)) /3 (1), (54)
(i)} = S} 69

b (t)

+(Uffp(1)(t) + Uﬁ(ﬂ)m - f(t)

The voltage constraint of Eq. (50) derives form Eq. (4),
by replacing the quantities ||z[|?f{(t) with the corrections
f)ﬁ(t),Vt,d,l. The power flow constraints of iDF, Egs. (51)-
(52) and the ampacity constraints Eqs. (53)-(55), derive from
Egs. (1)-(2) and Eqgs. (7)-(9) respectively, by replacing the
quantities r;f{(t), z;f(t) with the corrections p(t), ¢i(t)
and using the approximations 7¢(t) for the voltage magnitudes.
Therefore, in the convex scenario-based OPF solved by iDF,
the active and reactive power losses excluded in the DistFlow
approximation are treated as loads at the bottom node of
each line, but they are also used to compute the necessary
corrections for voltages and currents.

B. Load Flow (LF) Module

The LF module is given as [E(t,d),C(t,d), V(t,d)] =
LF(sp(t,d), s(t,d)), i.e., it computes for a specific scenario
d and time ¢, (i) the electrical state of the grid, (ii) the active
and reactive power losses and voltage corrections and (iii)
the voltage magnitude approximations. The second output is
not accounted for in DistFlow and it is applied as input to
the iDF as described above. The inputs of the LF include
the power injections (PQ-load buses) that are given for every
time and scenario. Also, we consider the batteries as PQ buses
with injections computed by the iDF module at the previous
iteration. Given the power injections at the buses, LF solves for
a specific time and scenario, the exact power flow equations
(Egs. (1)-(4)). For the latter solution, LF applies the Newton
Raphson numerical method. The existence and uniqueness of
the LF solution for radial distribution networks is shown in
[36] for feasible voltage magnitudes (close to 1) and in [37]
for bounded voltage magnitudes. The outputs (ii) and (iii) of
LF, Vi,l,d,t, are computed as

5/ (1), 4 (t), 0 ( )] HORGIREN T HE

e

(56)
(57)

Correction and approximation terms

computed by LF become inputs for iDF
C(k+1) V(A +1) 111111 \h/ xlu)n
kek+1
| 1 l Dispatch plan
gDP (k)
. pa—
g+ modules iDF |, o
Electrical state Electrical state
derived by LF derived by iDF
k
5

Battery power trajectories computed by
iDF become inputs to the LF modules

Fig. 4: Tllustration of the CoDistFlow iterations.

C. Correctness of the Solution of CoDistFlow

From numerical evaluations, we observed that CoDistFlow
converges in all cases in few iterations. This is intuitively
expected, because CoDistFlow is initialized by DistFlow and
iterates over DistFlow which is already a good approximation
of the AC power flow equations. In Fig. 4, we illustrate the
iterations of CoDistFlow and the quantities exchanged between
iDF and LF. CoDistFlow converges when these exchanged
quantities become stationary and we say that their values are
a fixed point of CoDistFlow:

Definition 1: (s%,C*,V*) is a fixed point of CoDistFlow
if:

1) [SPPE', s%]

2) [E(t,d),C*(t,d),V*(t,d)] =

Vt, d, for some F.

Since iDF (Eqgs. (48)-(55)) uses external correction and
approximation terms in the power flow equations, it is not
entirely obvious that, at a fixed point, the exact power flow
equations are satisfied. In other words, the question is whether
after convergence of CoDistFlow (in the limit), £ and E’
shown in Fig. 4 coincide. In the next theorem, we prove that it
is indeed correct assuming a mild condition on the admittance
matrix. It follows that, at a fixed point of CoDistFlow, the
electrical state, F’(t,d), Vt,d, which is used to compute
the dispatch plan SPP, is a solution of the exact power
flow equations. Furthermore, since the voltage approximations
V(t,d), Vt,d are computed based on E(t,d), Vt,d, at the
fixed point, they are exact and the exact ampacity constraints
in Egs. (7)-(10) are satisfied by the solution of CoDistFlow.

Let us define the matrices H = (I — G)™! and M =
diag(xz)H diag(b).

Theorem  2:

= iDF(s,C*, V*), for some SPP, E’ and
LE(sp(t,d), s(t. d)),

Assume that |[H M| < 1.

Let (s%,C*,V*) be a fixed point of CoDist-
Flow, namely [SPF E’ s3] = iDF(s,C*, V),
[E(t,d),C*(t,d),V*(t,d)] = LF(s§(t,d),s(t,d)),Vt,d.

Then E' = E, i.e., the electrical states given by CoDistFlow
and LF coincide.
A sufficient condition for |[H'M]||; < 1 is [7]:

1

T (58)

max x; max b; <
vi Vi

The proof is given in Appendix A.

V. EVALUATION RESULTS

In this section, we evaluate CoDistFlow in two cases, (i) a 4-
bus network (see Fig. 5a) and (ii) in a real Swiss distribution
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(a) Single-line diagram of the 4-bus network.
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(e) Comparison of dispatch plans. Resistance battery model.

Fig. 5: Day-ahead results for the 4-bus network. We consider w; = 0.0005, w3z =1, ws = 10, wy = 0.001.

grid. The former is used to show the effect of the grid and
battery losses and of the battery model on the optimal dispatch
plan, along with constituting a minimum test-case that can be
easily reproducible. Indeed, for the 4-bus network we provide
comparative results with an iterative linearization algorithm
inspired by similar approaches from the existing literature. The
latter case refers to a larger distribution grid and serves as a
more realistic case study of the effect of the grid and battery
losses on the effectiveness of the optimal dispatch plan.

CoDistFlow converged in 3 iterations for the 4-bus network
and in 4 iterations for the real grid. We did not observe con-
vergence issues in all the simulations we ran. However, as the
computation is performed day-ahead, even a larger number of
iterations until convergence is acceptable. We consider v = 0.9
pu, v = 1.1 pu, wo = wy = wg = 1, EBJ = 0.15@3,1-,
Ep; = 0.85S0Eg;,Vi, SoE} ;(0) = 0.3SoEp;,Vi,d and
ap = 0.1, At =0.25 h.

The choice of the scenarios is performed as follows. We fix
an upper bound of the probability of constraint violation by
the optimal solution at a random realization of the uncertain
parameters equal to e = 3% with confidence level 1—a = 99%

(see Section II-H). Note that, this upper bound refers to the
violation of any single constraint that may not lead to the
inoperability of the grid. Then, according to Eq. (30), the
number of scenarios should be D = 55,000. For each of the
above evaluation cases, we utilize a prosumption forecast over
one day and we create random variations around it (at most
10% above and below) via Monte-Carlo, producing 55,000
scenarios in total. Afterwards, we perform scenario reduction
as described in Section II-H. After solving the scenario-based
AC OPF we perform a-posteriori calculations to evaluate
the effectiveness of the scenario reduction as described in
Section II-H, and we refine the upper bound e. In each
specific evaluation case, we provide more details on the used
prosumption forecast and we illustrate the scenarios obtained
after the reduction.

A. Case 1

The resistance of the battery model is 0.017 €2, obtained
as mentioned in Section II-E2. Each line has an ampacity
limit of 80 A. The battery characteristics are sgﬁ = 720 kW,
SoEg 2 = 500 kWh. Based on the grid’s parameters given in
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Fig. 6: Monte-Carlo simulation results for the 4-bus network.

Fig. 5a, this grid satisfies the sufficient condition of Eq. (58) in
Theorem 2. After scenario reduction, we consider a set of 20
scenarios for the prosumption of nodes 1 and 3 (see Fig. 5b),
that are based on a forecast for a winter day. The probability
density of the considered scenarios is illustrated in Fig. 5c.
In Figs. 5d and Se, we compare the dispatch plan using
the DistFlow approximation and the CoDistFlow scheme for
the two battery models, namely, the traditional model with
the efficiencies and the model with the resistance. We define
Mpp as the sum for the whole day of the absolute differences
between the dispatch plans of DistFlow and CoDistFlow.
Firstly, we observe that Mpp is more than 900 kWh for both
battery models and it is due to the grid losses. Intuitively,

in case of DistFlow the battery can experience problems to
dispatch since these losses are larger than the battery capacity.
Secondly, we observe that the battery model impacts the shape
of the dispatch plan, and specifically the battery model with
the resistance leads to a much smoother dispatch plan.

The dashed lines in Figs. 5d, Se correspond to the power
at the PCC, P{(.), for several scenarios d, computed by
the LF using as input the battery power values obtained by
CoDistFlow after convergence. They aim at verifying that
the output of CoDistFlow satisfies the LF equations, i.e., to
support numerically Theorem 2. Their differences from the
dispatch plan are explained by the error weighted by ws in
the objective. When computing the dispatch plans, the power



factor at the PCC is always equal to 1, thus satisfying for both
DistFlow and CoDistFlow the hard constraint of Eq. (6) with
€08(@)min = 0.95, for all time intervals, all scenarios and for
both battery models.

We evaluated the derived dispatch plans in Fig. 5e for
16,000 scenarios created via Monte-Carlo in the way that
is described above for the construction of the initial set of
scenarios. In other words, we aim at examining if random
scenarios that do not fall in the initial set of the 55,000
scenarios can follow the dispatch plans of DistFlow and
CoDistFlow and if they satisfy the constraints of Eq. (27).
Firstly, all scenarios satisfied the constraints; thus, we can
apply Eq. (33), for computing the confidence interval of the
probability that the optimal solution at a random scenario
(within the uncertainty model considered above) will violate
any single constraint. The result is that, at level of 99%, this
probability lies in [0,0.0003], i.e., the probability is much
less than 3%, as obtained above via the number of scenarios
considered in the scenario-based day-ahead problem (before
scenario reduction). We note that, also in this case, the power
factor is equal to 1 for all random scenarios, satisfying the
hard power factor constraint of Eq. (6).

In Figs. 6a, 6b (DistFlow) and 6¢c, 6d (CoDistFlow), we
compare the actual realization at the PCC with the cor-
responding dispatch plan and show the actual battery SoE
trajectories compared to the expected ones, where the latter
are computed day-ahead for the scenarios at the reduced set.
The lower/upper/average envelope takes for each time the min-
imum/maximum/average value for all scenarios, respectively.
The realized (actual) battery SoE trajectories are computed by
the TTC model [3], considered as capable to reproduce the
true battery behavior. We define My as the daily sum of the
absolute differences between the actual realization at the PCC
and the dispatch plan for a specific scenario. We observe that,
if not accounting for the grid and battery losses (Fig. 6a), the
mean value of Mp is more than 5.5 times bigger compared
with Fig. 6¢. Indeed, in Fig. 6a the battery cannot handle the
overall losses that is verified by the increased actual value at
the PCC compared with the dispatch plan for all scenarios (i.e.,
the lower envelope lies on the dispatch plan). This is the reason
why the actual battery trajectories fell below the expected
ones in Fig. 6b (i.e., the average envelope lies much lower
the expected trajectories). On the contrary, the mismatches in
Fig. 6¢c emerge both above and below the dispatched power
at the PCC, thus indicating that their cause lies in random
variations of the prosumption not accounted in the considered
scenarios. This is aligned with the actual battery trajectories
in Fig. 6d, where their mean envelope almost follows the
expected ones computed in day-ahead.

In Fig. 6e, we compare the histogram of the mismatches,
M, for all the scenarios between DistFlow and CoDistFlow.
We observe that, the histogram of the former is biased towards
very high values given that overall losses are not considered
in the dispatch plan. On the contrary, the mismatch values in
CoDistFlow are much closer to zero, though they may deviate
from zero due (i) to the difference of the prosumption in
the actual realization with respect to the scenarios used for
computing the dispatch plan, (ii) to the fact that the dispatch

plan does not exactly correspond to the power at the PCC for
all considered scenarios (error quantity weighted by ws), or
(iii) to the fact that in the actual realization we apply a more
precise battery model (TTC).

B. Comparative Evaluation Results in Case 1

In this part we compare CoDistFlow with an iterative
algorithm for solving the scenario-based AC OPF which is
similar with the iterative linearization method proposed in
[13]. The details of this algorithm, denoted as iL-OPF (iterative
linearized OPF), are provided in Appendix B.

In Fig. 7a, we compare the dispatch plans obtained by
DistFlow, CoDistFlow and iL.-OPF. For comparison purposes,
we initialize iL-OPF using the optimal battery trajectories
given by DistFlow (i.e., by the first iteration of CoDistFlow).
The initial voltages, currents and power at the PCC for every
scenario and time are given by LF using as inputs the same
battery trajectories and the fixed load injections for each
scenario. As a result, the grid and battery losses corresponding
to the optimal battery trajectories given by DistFlow and the
fixed load injections for each scenario are reflected in the
initial voltages, currents and power at the PCC. CoDistFlow
has the advantage of being initialized always by DistFlow and
therefore there is no ambiguity on its initialization as it is
the case for iL-OPF. CoDistFlow converged after 3 iterations
and iL-OPF after more than 150 iterations, while the dispatch
plans obtained by both CoDistFlow and DistFlow are much
smoother than the one obtained via iL-OPF.

Following a similar procedure as in Section V-A, we com-
puted the mismatch, Mg, between the actual realization at
the PCC and the dispatch plan, for DistFlow, CoDistFlow
and iL-OPF, for 200 random scenarios. Via this procedure,
we basically compare the effectiveness of the dispatch plans
(Fig. 7a). The results are shown in Fig. 7b, where it is clearly
observed that iL-OPF leads to significantly higher mismatch
values than both DistFlow and CoDistFlow. This can be
intuitively explained by the iterative linearization of the AC
power flow equations around suboptimal operating points. In
general, comparing CoDistFlow with iL-OPF, we can state
that CoDistFlow is a more stable algorithm in terms of its
convergence (i.e., the initial conditions are specific and lead
to convergence within a few iterations), while showing low
mismatch values.

C. Case 2

The realistic case 2 consists of 34 buses. Fig. 8a presents
the 6 scenarios for the PV generation at node 22 (that lies
far from the PCC). These scenarios derive from the scenario
reduction as described above based on the forecast for a
summer day. The battery is connected to node 2 (next to
the PCC), with 6 MW and 6 MWh as nominal power and
energy values. The max/min (magnitude) line impedance is
(0.34 + 50.24)/(0.025 + j0.01) €2, the max/min shunt capac-
itance is 200.15/6.73 ©S and the max/min ampacity limit is
400/140 A. Note that, based on these parameter values, this
grid satisfies the sufficient condition of Eq. (58) in Theorem 2.
As the grid has a larger scale, the battery model is not expected
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to affect the dispatch plan (Section II-E), as it is also observed
in our simulations. Thus, we present only the results derived
using the battery model with the resistance.

Fig. 8b compares the dispatch plan computed via DistFlow
and CoDistFlow. The mismatch Mpp attains a value around
2 MWh that can be characterized as large compared with
the battery capacity (6 MWh). When computing the dispatch
plans, the power factor at the PCC satisfies for all time
intervals and all scenarios considered in the scenario-based,
day-ahead optimization problem the hard constraint of Eq. (6),
with cos(¢)min = 0.95.

Similarly to Case 1, we evaluated the derived dispatch plans
in Fig. 8b for 10,000 scenarios created via Monte-Carlo.
In the a-posteriori assessment, all the scenarios satisfied the
constraints, thus using Eq. (33), the confidence interval of the
probability that the optimal solution at a random scenario will
violate any single constraint, at confidence level 99%, is equal
to [0, 0.0005].

In Figs. 9a, 9b (DistFlow) and 9c, 9d (CoDistFlow), we
compare the actual realization at the PCC with the dispatch
plan and we show the actual battery SoE trajectories compared
to the expected ones (computed day-ahead). We observe that, if
not accounting for grid and battery losses (Fig. 9a), the average
mismatch between the dispatch plan and the actual realization,

M, is more than 6 times bigger, compared with Fig. 9c, as in
Fig. 9a the battery cannot handle the grid and battery losses.
The latter is illustrated by (i) in Fig. 9a, the lower envelope
lies on the dispatch plan and (ii) in Fig. 9b, the actual battery
SoE trajectories fell on average below the expected ones. On
the contrary, the mismatches in Fig. 9c emerge both above
and below the dispatched power at the PCC and in Fig. 9d the
average envelope of the battery trajectories almost follows the
expected ones computed in day-ahead.

Finally, in Fig. 9e, we compare the histogram of the
mismatches, Mg, for all the scenarios between DistFlow and
CoDistFlow. Similarly, to Case 1, the histogram of the former
is biased towards very high values given that the overall
losses are not considered in the dispatch plan. The non-zero
mismatch observed for CoDistFlow is not attributed to the
overall losses rather to the same reasons explained in Section
V-A.

The economic impact of applying the CoDistFlow scheme
rather than the DistFlow approximation can be evaluated by
considering the difference in the amount of reserve which is
activated in each respective case and the price of reserve per
unit of activated regulating power. We assume the dispatched
distribution network as a price taker and we consider average
figures of the regulating power prices in the NordPool electric-
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Fig. 9: Monte-Carlo simulation results for the real Swiss distribution grid.

ity market (29.23 EUR per MWh derived as the mean of the
prices 26.02 and 32.44 EUR per MWh for down and up regula-
tion, respectively?®). Then, the economic loss for not following
the dispatch plan is equal to 1.838-29.23 = 53.85 EUR per day
(using the mean Mp value in Fig. 9a), when dispatching the
operation of the feeder with the DistFlow approximation, while
it is decreased to 0.2969 - 29.23 = 8.7 EUR per day (using
the mean Mg value in Fig. 9c) when the CoDistFlow scheme
is used.

VI. DISCUSSION ON THE EXTENSION TO MULTIPHASE
UNBALANCED GRIDS AND TO MESHED GRIDS

In this section, we discuss a potential way to extend
CoDistFlow to unbalanced distribution grids and to meshed

3Average hourly regulating power for DK2 for 2016

(http://www.nordpoolspot.com/).

prices

distribution grids. However, these extensions are non-trivial
processes and they constitute part of our future research.

Regarding the extension of CoDistFlow to unbalanced grids,
let us consider radial power grids whose generic components
connected between two of their buses are characterized by cir-
culant shunt admittance and longitudinal impedance matrices
(i.e., for a matrix of rank n, its eigenvectors are composed
by the roots of unity of order n). For these grids, it is
possible to decompose all the nodal/flow voltages, currents
and powers with the well-known sequence (or symmetrical
components) transformation. The result of the sequence trans-
formation is composed by three symmetrical and balanced
three-phase circuits for which the proposed CoDistFlow can be
applied as is. The main problem of this approach, however, is
given by the transformation of the voltage/current constraints
from the phase domain to the corresponding ones in the



sequence domain. Indeed, such a transformation couples the
voltage/currents constraints in the sequence domain. However,
it is possible to separately bound the zero and negative
sequence terms of nodal voltage magnitude and lines current
flows by using more conservative constraints as the magnitude
of these quantities are restricted by standards/norms (i.e., their
maximum magnitudes are known a-priori). The binding of the
zero and negative sequences associated with the voltages and
currents should allow to decouple the positive sequence. Then,
we can apply the proposed CoDistFlow process to the three
sequences for which we may derive different voltage/current
inequalities. Once the three problems are solved, we can
transform the obtained voltage/currents/powers in the sequence
domain back to the (unbalanced) phase domain.

Regarding the extension to meshed grids, note first that the
proposed method relies on (i) the solution of a LF problem
that, by construction, can only ensure a unique solution for
radial systems and (ii) the DistFlow approximation, which
also works properly only in radial systems. A straight solution
would be to first “radialize” the grid (e.g., as in [38]) and
apply CoDistFlow as is. Another possible solution would be to
combine the grid radialization iterations [38] with the CoDis-
tFlow iterations. Yet, as we focus on distribution networks,
the method can be applied to most of actual systems that are
characterized by being radial.

VII. CONCLUSIONS

In this paper, we proposed CoDistFlow to solve the non-
convex scenario-based AC OPF with intermittent renewable
resources and battery storage, where current relaxation prac-
tices do not apply. CoDistFlow handles the non-convexity of
the scenario-based AC OPF by iterating until convergence over
an improved DistFlow approximation with correction terms
for line losses and nodal voltages computed via load flows
based on the battery power values obtained by the previous
iteration. A fixed point of CoDistFlow is shown to satisfy
the exact power flow equations and the exact operational
constraints. We obtained a dispatch plan for an entire dis-
tribution network, while accounting for the grid and battery
losses, and possible realizations of the stochastic resources
and load. We have shown how to combine CoDistFlow with
more realistic battery modeling at no extra cost in complexity.
Also, we have thoroughly studied via numerical evaluations
and simulations the negative effect of not considering the grid
and battery losses in the dispatch plan by comparing with the
DistFlow approximation in both a simple and a realistic grid.
Finally, we have shown the advantages of CoDistFlow via
comparisons with another iterative linearization scheme. We
expect that our findings will enable the effective dispatch using
storage of modern distribution grids in presence of stochastic
heterogeneous resources, thus contributing to a more stable
and predictable global grid. This is of significant importance
as the deployment of distributed energy resources increases
monotonously and may significantly impact the stability of
the grid due to their stochasticity, only to make things worse
when not accounting for the grid and battery losses, as shown
in this paper.

APPENDIX A
PROOF OF THEOREM 1

Proof of Theorem 1. We define as f%(¢) the column vector
of square current magnitude values at z; for all lines (dimen-
sion N). I, 0 are the identity and zero matrices correspondingly
with dimension N x N and 0,, the zero vector with dimension
N. AlSO, r= [Tl, ...,TN]T, b= [bl, ceny bN]T, e = [1, 0, ...,O]T
(dimension N), z = [||z1]|?, ..., [[z2x]|?]F. Then, for scenario
d and time ¢ the power flow equations can be written in each
corresponding case, LF, iDF, as:

a) LF:

PA(t) = p(t) + p5(t) + GPU(t) + diag(r) f7(t),  (59)
QU(t) = ¢(t) + B (1) + GQ(t)  (60)
—% diag(b)(I + GT)vd(t) + diag(x) f(t),
ve(t) = GTvd(t) + voe — 2diag(r)PL(t)  (61)
—2diag(z)Q4%(t) — diag(z) diag(b)GTv(t)
+diag(2) f(t),
) = 1SE0) + ol (021 ol (1) 62)
Condition NLI.
b) iDF:
PU(t) = p*(t) + ph(t) + GP(t) + PUL), (63)
QU(t) = q(t) + af(t) + GQ(t) (64)

5 diag()(T+ GT() + Q1)
ve(t) = GTvl(t) + voe — 2diag(r)P(t) (65)
—2diag(x)Q%(t) — diag(z) diag(b)GTv?(t) + V(t).

Then, the power flow equations within iDF (i.e., Eqs. (63)-
(65)) can be written more compactly as:

(I-R)E'(t,d) = A(s(t,d) + sp(t,d)) + C(t,d) + K, (66)

and the exact power flow equations (LF) are the same but

subject to condition NL1, i.e.,

(I-R)E(t,d) = A(s(t,d) + sp(t,d)) + Df(t) + K, (67)
1) = on(E(t,d)), (68)

where ¢y (.) is a non-linear function defined based on NLI
and

G 0 0
R = 0 G —1 diag(b)(I+G")

—2diag(r) —2diag(z) (I - diag(x)diag(h))G”
(69)
A =[L0;0,1;0,0], (70)
K = [0y; 0y; voe], (71)
D = [diag(r); diag(x); diag(z)]. (72)

In [7], it is shown that Eq. (66) has a unique solution
for given C*, s%, if |[H'M]||; < 1. Note that in this case
C*(t,d) = Df®*(t), Vt,d, where f%*(t) corresponds to
power injections s%(t, d) since [E(t,d), C*(t,d), V*(t,d)] =
LF(s%(t,d), s(t,d)). Thus, at the fixed point of CoDistFlow,
Egs. (66), (67) coincide and have a unique solution. This
proves Theorem 2.

)



APPENDIX B
IL-OPF ALGORITHM

Let us define V;(t), ©%(t), I{(t) the voltage magnitude of
node ¢, voltage angle of node ¢ and current magnitude of line [
respectively for scenario d and time ¢, and V4(t), ©%(t), I%(t)
the corresponding collective column vectors for all nodes

or lines. Also, J}:gl’d(t) stands for the Newton-Raphson
Jacobian of our system defined as in [13], Jlégl’d(t,j) stands
for the j* line of the Jacobian, JgQ(t) is the Jacobian
excluding the first row and the first column that correspond
to the PCC (and thus it is invertible [13]) and finally,
J}Zgjd(t) the inverse of Ji,(t) with an additional row and
an additional column both being the first ones and filled with
zero elements. For a vector x, we define as 6z = z — z©,
where 2© refers to the operating point around which we
perform the linearization. Let yo, the collection of all

PIO(1),Q4°(t), VIO(t), 090 (t), 19(t), s3(t, d), Vt, d,

and Y the one consisting of all
PA(t), Q(t), Ve(t),04t), I4t), sp(t,d), Vt, d. Then,

the load flow equations are linearized as follows.
SP(t) = Jhe (¢, 1) y [6Vi(t); 60%H)], (73)
Q) = JLEH N +1)| [5VAr); s04(t)], (74)

Yy
[6V4(); 504(1)] = Tpg" (1) Lo [oPB(0): 3q5(0)] . (79
oI (t)  aI4(t)

diy diy. sad

SI4t) = Vi)’ 8@%)] y [6V4(t); 60%(¢)] . (76)

Based on the above linearization of the load flow equations we
design the L-OPF module where L stands for linearized. L-
OPF is given as [SPF y] = L-OPF(y?). Then, L-OPF solves
the following optimization problem:

Sr,gl;,r}y(%),

s.t. Vt,d,l,
(11) = (13), (17) — (22), (73) — (76),

v < VA1) <7, Ift) < T,. (77)

Then we design the iterative L-OPF algorithm denoted as
iL-OPF as shown in Algorithm 2. The idea is to iteratively
compute the operating point around which the linearization
is performed until convergence. The operating point for the
linearization of the current iteration is the optimal set y
obtained by the previous iteration. The initial operating point
y2 (9 is considered known.

Note that this algorithm is valid for both radial and meshed
networks as it based on the bus injection model.
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