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Abstract

This work proposes a method for optimally planning (sizing and siting) en-
ergy storage systems (ESSs) in power distribution grids while considering the
option of curtailing photo-voltaic (PV) generation. More specifically, for a
given PV generation capacity to install, this method evaluates whether cur-
tailing PV generation might be more economical than installing ESS. Indeed,
while curtailing excess PV generation might be considered a last resort to
avoid grid violations during operations, it is typically neglected in the plan-
ning phase. The proposed method accounts for the constraints of the power
grid (i.e., nodal voltages, lines, and substation transformer limits) modeled
by linearized power flow equations to keep the problem formulation tractable.
The planning problem minimises the net investment costs of the ESSs, and
the imported and exported electricity costs considering a planning horizon of
20 years. The results are presented for a medium voltage (MV) distribution
grid with different levels of installed capacity of PV generation, reflecting
future scenarios of PV generation development. The sensitivity of the ESSs’
sizes and investment costs to the electricity prices accounting for variable
levels of PV production in the global generation mix is also investigated.

Keywords: Energy storage systems, PV generation, Curtailment, Optimal
planning
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1. Introduction

Given the prominent role of photo-voltaic (PV) generation for meeting
fossil-free energy-transition targets, it is to be expected that power distribu-
tion grids will host significant levels of PV generation in the future. High
levels of PV generation in distribution grids can cause violations of statutory
voltage levels, congestions in lines and substation transformers, especially
when the generation largely exceeds the nominal demand.

In the existing literature, several methods have been proposed to solve
these problems, such as curtailing excess PV generation [1, 2], installing
energy storage systems (ESSs) [3–5], and reinforcing existing power lines and
transformers [6, 7]. The works in [1, 8–11] have shown that curtailing excess
PV generation is economically and technically viable. The works in [12, 13]
proposed to limit PV generation passively or actively to curb reverse power
flows. In [14], a fixed limit on the household export was imposed, whereas
a percentage of the installed capacity was allowed to be curtailable in [12].
An overview of global trends on the acceptance of curtailment strategy is
presented in [11].

Installing ESSs to support the grid operations has been also widely in-
vestigated [3, 15–20]. For example, planning ESSs for voltage regulation was
proposed in [15–17], for frequency regulation in [18, 19], and for lines and
transformer congestion management and minimizing reverse power-flows in
[3, 20]. In these works, the PV plants are modeled as uncontrollable power
injections without the possibility of curtailing any power; not exploring the
potential trade-offs between ESSs and PV curtailment might result in large,
and possibly sub-optimal, energy storage capacity requirements.

The works in [8, 10] explored curtailing PV generation in combination
with controlling ESSs without, however, considering the grid’s constraints.
Authors of [1, 14] defined export limits from PV plants including curtailment
and grid constraints using optimal power flows (OPFs) and Monte-Carlo
methods, however without considering ESSs. The work in [9] proposed com-
bined strategic sizing of PV plants and ESSs in LV grids considering the
investment costs, PV curtailment, and substation transformer capacity. The
work in [21] proposed a rule-based method to plan distribution grids (in-
cluding grid reinforcements) considering the PV curtailment option, however
without ESSs.

In summary, planning formulations from the existing literature either
ignore the grid constraints or do not consider curtailing PV generation in
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combination with optimal sizing of ESSs.
In order to fill this gap, this paper proposes a method to size and site

ESSs in distribution grids while considering PV curtailment and distribution
grid’s operational constraints, namely nodal voltage limits, lines’ ampacities,
and substation transformers’ ratings. Studying sizing and siting of ESSs, in
combination with curtailment of PV generation for satisfying the grid con-
straints stands as the main contribution of this paper. The grid constraints
are modeled with a linearized power flow model, achieving a tractable formu-
lation compared to traditional non-linear AC optimal power flow models. We
use a linearized power flow model because it can be applied to distribution
grids with both radial and meshed configuration, as opposed to second-order
cone relaxations that are typically valid for radial systems [22, 23].

The proposed planning method is applied to a medium voltage (MV)
distribution grid; the results of the ESS planning with and without the PV
curtailment options are discussed. In addition, assuming a scenario where
PV generation is the dominant source of production at the system level, we
perform a sensitivity analysis on the electricity price aimed at exploring the
difference in the resulting ESSs’ plans when PV is curtailed.

The paper is organised as follows. Section 2 describes the problem and the
proposed methods, Section 3 presents the case study, and Section 4 presents
and discusses the results. Finally, Section 5 draws the main conclusions.

2. Problem formulation

We consider a distribution network interfacing prosumers with electrical
demand and distributed PV generation: the objective of the problem is to
determine the cost-optimal sites and sizes (i.e., converter’s power rating and
energy storage capacity) of ESSs to satisfy the grid’s operational constraints
while considering optional PV curtailment. The problem accounts for the
investment costs for the ESSs and the total running costs of all resources in
the distribution grid, given by the difference between the cost of consumed
electricity and the revenues from selling PV energy to the grid. The problem
is formulated as a stochastic optimization, as described in the rest of this
section. The following notation is used: index n ∈ N = {1, . . . , Nbus} denotes
the grid node among total Nbus nodes, l ∈ L = {1, . . . , L} denotes the line
index, and T = {t, t + 1, . . . , t + T} denotes the time index (with interval
duration ∆t).
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2.1. Cost function

2.1.1. Investment costs for ESSs

Let Eess
n ∈ R+ and P ess

n ∈ R+ denote the energy capacity of a ESS at node
n and the rated power of its converter, respectively (one, possibly aggregated,
ESS per node is assumed). The binary variable F ess

n ∈ {0, 1} indicate whether
a ESS is installed at node n. The investment costs for installing a ESS with
energy capacity Eess

n and power rating P ess
n is:

J I (P ess
n , Eess

n , F ess
n ) = CPP ess

n + CEEess
n + CFF ess

n , (1)

where CP, CE and CF are the unitary cost for rated power, unitary cost for
energy capacity and installation cost, respectively.

It is worth highlighting that degradation costs are not included in this
analysis because, in this application, batteries are used to mitigate the effects
of the daily peaks of PV generation, and the number of cycles does not result
in a significant cycle aging compared to calendar aging (1).

2.1.2. Operational costs

The cost (or revenue, if negative) for operating energy storage is given by
buying and selling electricity to the grid operator. Electricity is purchased
from the grid at the retail electricity price cimt and sold at the wholesale
electricity price cext . Let pimn,t and pexn,t be the nodal imported and exported
power at time t and node n. The operational cost is then:

JOPn,t = pimn,tc
im
t − pexn,tcext . (2)

Nodal power export and import depend on PV generation, ESSs’ power,
and nodal demand. For example, Fig. 1 shows the load (ploadn,t ), PV power
potential (p̂pvn,t), actual (curtailed) PV power (ppvn,t), and ESS power (pessn,t). In
this example, the node exports power from t0 to t1, t3 to t6, and t8 to t9. PV
generation is consumed locally between t2 and t7 and is curtailed between
t4 and t5. The imported and exported electricity at node n and time t is

1This hypothesis was corroborated by performing a rainflow counting analysis on the
battery power found by the proposed optimal power flow. This resulted in 1.5 equiva-
lent cycles per day. Considering a cycle life of 8’000 and 20’000 cycles for lithium-iron-
phosphate and lithium-titanate-oxide electrochemistry (technologies typically adopted in
grid application), respectively, the battery service life would be 15 and 36 years, respec-
tively, thus not dominant compared to calendar life due to calendar aging (typically 15-20
years).
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Figure 1: Example of nodal aggregated contributions of PV power, ESS power and load.

modeled as:

pimn,t = [ploadn,t + pessn,t − p
pv
n,t]

+ (3)

pexn,t = [−(ploadn,t + pessn,t − p
pv
n,t)]

+ (4)

where [x]+ = max(x, 0) is the positive part operator. The operational cost
is then:

JOPn,t (ppvn,t, p
ess
n,t) = [ploadn,t + pessn,t − p

pv
n,t]

+cimt − [−(ploadn,t + pessn,t − p
pv
n,t)]

+cext . (5)

As illustrated in Appendix A, the expression above can be reformulated as:

JOPn,t (ppvn,t, p
ess
n,t) = (cimt − cext )[ppvn,t − ploadn,t − pessn,t]+ + cimt

(
ploadn,t + pessn,t − p

pv
n,t

)
.

(6)

which is a positive weighted sum of two convex functions (thus convex) pro-
vided that cimt ≥ cext (2).

2.2. Constraints

2.2.1. Grid model

We consider a balanced and transposed three-phase system modeled by its
single-phase equivalent. Grid constraints are represented with a linearized
grid model computed with the sensitivity coefficient method described in
[2, 24]. Computing the sensitivity coefficients requires solving a system of
linear equations as a function of the grid state and admittance matrix [24, 25],

2This is normally the case as the retail electricity price is typically larger than the
wholesale electricity price due to grid tariffs.
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whose solution is guaranteed to exist and be unique when the Jacobian of
the load flow problem is locally invertible [26].

The active and reactive power at the grid connection point (GCP) of this
distribution grid with the upper-grid level is denoted by pgcpt , qgcpt ∈ R. Nodal
voltages and lines current magnitudes are denoted by vectors |vt| ∈ R|N | and
|it| ∈ R|L| at time index t. The bold-typeface represents vectors. Symbols
ppv
t ,p

load
t , pess

t and qpv
t ,q

load
t , qess

t collect aggregated active and reactive power
injections of PV power, ESS power, and load, respectively. In this setting,
active and reactive nodal injections at time t read as:

pt = ppv
t − pload

t − pess
t t ∈ T (7)

qt = ppv
t − qload

t − qess
t t ∈ T . (8)

Linearized grid quantities as a function of the nodal injections and the grid
states (dependency on the grid admittance matrix and grid operating point
are omitted to simplify the notation) are

|vt| =Φv(pt,qt, |v0|) = Av
t

[
pt
qt

]
+ bv

t (9a)

|it| =Φi(pt,qt, |v0|) = Ai
t

[
pt
qt

]
+ bi

t (9b)[
pgcpt

qgcpt

]
=Φs(pt,qt, s̃0) = Agcp

t

[
pt
qt

]
+ bgcp

t (9c)

where Av
t ∈ R|N |×2|N | and bv

t ∈ R|N |, Ai
t ∈ R|L|×2|N | and bi

t ∈ R|L|, Agcp
t ∈

R2×2|N | and bgcp
t ∈ R2 collect the sensitivity coefficients and known terms of

the linear model as described in [27]. For more compact expressions, we de-
note the linear models of voltage and current and the power at the GCP with
the functions Φv(pt,qt, |v0|), Φi(pt,qt, |v0|) and Φs(pt,qt, s̃0), respectively.
Here, v0 and s̃0 are the initial operating point for power-flow linearization of
voltage and power at the GCP.

The grid constraints read as:

v ≤ Φv(pt,qt, |v0|) ≤ v t ∈ T (10a)

0 ≤ Φi(pt,qt, |v0|) ≤ i t ∈ T (10b)

0 ≤ (pgcpt )2 + (qgcpt )2 ≤ S
2

t ∈ T , (10c)

where (v,v) denotes the operational limits on the nodal voltages, i the lines’
ampacity and S the substation transformer capacity. The linear grid model
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in (9) is validated in Appendix B showing that the error on the modeling
of the nodal voltages and branch currents are in the order of 10−6 and 10−3

respectively.

2.2.2. PV generation model

PV plants’s production depends on specific local weather variables and
conditions. We model the PV generation potential as a function of the lo-
cal plane-of-array (POA) irradiance corrected accounting for the estimated
model temperature and plant rated power, as in [28]. The PV generation
potential p̂pvn,t for a plant with rated power P pv

n is:

p̂pvn,t = It
[
1 + α(T air

t + βIt − 25)
]
P pv
n (11)

where It is the POA irradiance, T air
t the air temperature, α = −0.0043 and

β = 0.038 are empirical parameters for open-rack PV plants [28]. POA ir-
radiance can be computed for arbitrary tilt and azimuth configurations of
PV panels by applying transposition models to global horizontal irradiance
(GHI) measurements, which are commonly available from pyranometers mea-
surements, satellite estimations, or statistical data. Air temperature is also
accessible from historical measurements/statistics.

We model curtailable PV plants as controllable resources operating be-
tween 0 kW and the generation potential (11):

0 ≤ ppvn,t ≤ p̂pvn,t. (12)

where ppvn,t is the aggregated PV generation at node n and is a variable of
the proposed method. PV power plants can also inject reactive power, and
thus feature an additional constraint on the capability curve of the PV power
converter. However, plants are here assumed to operate at a unitary power
factor, as it normally happens for small/medium scale PV facilities connected
to distribution grids.

2.2.3. ESS operations

We model ESS operations as controllable active and reactive power injec-
tions, pessn,t and qessn,t, subject to converters’ capability curve and state-of-energy
requirements. The first constraint reads as:

0 ≤ (pessn,t)
2 + (qessn,t)

2 ≤ (P ess
n )2. (13a)
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This convex expression is approximated with a piecewise linearization to
retain the linearity of the constraints, as proposed in [3]. The evolution of
the ESS state-of-energy (SOE) is modeled as

SOEn,t+1 = SOEn,t − pessn,t∆t, (13b)

where ∆t is the sampling time. ESS’ charging and discharging losses are
accounted for by augmenting the load flow problem formulation with vir-
tual transmission lines represented by an equivalent resistance (as shown in
Fig. 2) designed to reproduce ESS’s losses as proposed in [29]. This avoids
introducing binary variables or other kinds of relaxations to keep track of
the charging and discharging state of the ESSs. Since the ESS’ resistance
depends on the power and energy capacities, which are decision variables
in the optimization problem, the optimization problem is solved iteratively.
More information on the choice of ESS resistance is given in Appendix C.
The SOE constraints are:

aEess
n ≤ SOEn,t ≤ (1− a)Eess

n (13c)

where 0 ≤ a ≤ 0.5 is an adjustable parameter and Eess
n is the ESS energy

capacity.

Ideal ESS

virtual node real node

Figure 2: Equivalent circuit model of ESS.

2.2.4. ESS installation variables

The binary variables F ess
n are linked to the energy capacity and rated

power of the ESS in the following way:

F ess
n P ess

n ≤ P ess
n ≤ F ess

n P
ess

n (13d)

F ess
n Eess

n ≤ Eess
n ≤ F ess

n E
ess

n , (13e)
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where Eess
n , E

ess

n and P ess
n , P

ess

n are customizable parameters that can be used
to specify the allowable ranges of energy capacity and power rating according
to, for example, space availability or land use constraints.

2.3. Formulation of the planning problem

The decision variables of the problem are, on the one hand, the sites,
power rating, energy capacity, and charge/discharge of the ESSs, and, on the
other hand, the PV production adjusted for curtailment at all the nodes of
the grid. Decision variables are collected in the set
χ =

{
P ess
n , Eess

n ∈ R+, F ess
n ∈ {0, 1}, p

pv
n,t, p

ess
n,t, q

ess
n,t, ∀n ∈ N , t ∈ T

}
. Consider-

ing a planning horizon of ny years, the ESS planning problem is

min.
χ

∑
n∈N

J I (P ess
n , Eess

n , F ess
n ) +

ny∑
y=1

∑
t∈T

∑
n∈N

JOPn,t (ppvn,t, p
ess
n,t), (14)

subject to:

(10), (12), (13). (15)

The optimization problem above is a mixed integer linear program (MILP)
and it can be solved using any off-the-shelf solver.

3. Simulation setup

3.1. Case Study

The proposed planning scheme is applied to a medium voltage system.
Network data correspond to the “MV1” grid of the open-data(3) set in [20].
The network belongs to a region with high yearly insulation and large PV
generation potential, thus possibly subject to violations of operational grid
constraints due to excess production. The network topology is shown in
Fig. 3. It has identical lines of ampacities 284 Amps. It is a 24-node system
with voltage and power ratings of 20 kV and 6.2 MVA respectively. The
nominal loads and transformer rating is shown in Table 1. The network has
a peak demand of 4.13 MW. Table 1 also shows the installed capacity of PV
generation in the grid. These values of installed capacity are computed with
the hosting capacity tool in [20] and correspond to the highest amount of

3https://go.epfl.ch/SwissMVNetworkDB
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Figure 3: Network topology corresponding to “MV1” grid of the open-data set in [20].

Table 1: Nominal Load and PV per node.

Node Load [MW] PV [MWp] Node Load [MW] PV [MWp]
N1 - - N14 0.17 -
N2 - - N15 0.18 -
N3 0.22 - N16 0.19 -
N4 0.15 - N17 0.17 -
N5 0.14 - N18 0.20 -
N6 0.21 0.46 N19 0.21 -
N7 0.17 0.11 N20 0.22 -
N8 0.19 - N21 0.16 -
N9 0.20 2.33 N22 0.18 -
N10 0.19 1.40 N23 0.26 3.61
N11 0.14 - N24 0.23 -
N12 0.17 - N25 0.02 -
N13 0.17 -

Total 4.13 7.91

PV generation that does not violate the operational constraints of that grid.
The method is briefly described in Appendix D. For this case study, the PV
generation hosting capacity of this grid is 7.91 MW (without any ESSs or
curtailment). In the next section, this configuration is assumed as the base
case and is denoted by “100% of hosting capacity”. We also define three
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other cases, called A, B and C that correspond to an installed PV capacity
of 11.88 MWp, 15.83 MWp and 19.79 MWp (i.e. 150%, 200% and 250% of
the hosting capacity), respectively. We use these cases to simulate different
PV targets in the ESS sizing problem with an aim to obtain a sensitivity
analysis.

3.2. PV generation and loads

The planning algorithm requires scenarios of daily electricity demand,
irradiance, and the electricity prices. These values are from historical mea-
surements of a real MV distribution network in Aigle, Switzerland. To re-
duce the computational burden, we cluster irradiance and load measurements
and select eight scenarios4 representative of seasonal and weekend/weekdays
trends.

The load and the GHI scenarios (in pu) are shown in Fig. 4. The load
profiles for the different nodes of the grid are determined by multiplying the
nominal nodal demand from Table 1 with the load scenarios of Fig 4(a).
The PV generation profiles are determined by the PV model described in
Sec. 2.2.2.

3.3. Energy storage and electricity costs

The considered unitary costs of ESS are reported in Table 2. They are
derived from current market figures.

Table 2: ESS unitary costs.

Component Units Value
ESS converter rating (CP) [CHF/MVA] 200,000
ESS energy capacity (CE) [CHF/MWh] 300,000
ESS installation costs (CF) [CHF/site] 100,000

Export electricity prices are modelled using the wholesale electricity prices
of the days of the selected load/GHI profiles, shown in Fig. 5. Because this
paper’s objective is to evaluate the economic viability of energy storage for
congestion management and voltage regulation requirements resulting from

4As the scenario reduction is not the main focus of this paper, we work under the
assumption that these scenarios represent the whole set of data. In out future work,
we could use an advanced scenario reduction scheme for example in [30] guaranteeing
equivalence between the reduced and complete data set.
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(a)

(b)

Figure 4: Reduced scenario set for the sizing simulation: (a) Load scenarios and (b) GHI
scenarios

Figure 5: Electricity price profiles for 8 typical days.

installing distributed PV generation, the dynamic electricity price is replaced
by its average throughout the day; in this setting, the price is constant,
and ESSs have no incentives in discharging with high electricity prices and
charging with low prices (energy arbitrage). The retail (import) electricity
prices are obtained by adding to export electricity price the network transport
charges and taxes, reported in Table 3. These values are obtained from Swiss
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electricity market platform(5).

Table 3: Breakdown of electricity prices for Switzerland.

Cost breakdown value (×10−2 CHF) % of base price
Electricity base price 7.00 100
Network utilization 10.50 150

Duties 0.63 9
Feed-in remuneration 2.45 35

Total 20.58 294

4. Results

The optimization problem is implemented in MATLAB with Yalmip pack-
age [31]. We used a commercial solver Gurobi [32] for solving the optimization
problem. The optimization problem is run on a Macbook pro with 2.7 GHz
Quad-core intel core i7 configuration.

4.1. Sizing results

Table 4 shows the planning results without PV curtailment. It can be
seen that ESS size requirements increase steadily from case A to C. This is
due to increased levels of PV production results in more severe violations of
the grid’s constraints, finally requiring larger ESS capacity to ensure correct
grid operations.

Table 4: ESS sizes without PV curtailment.

Cases PV ESS
(MWp) MW MWh

A (150% of hosting capacity) 11.88 3.70 16.91
B (200% of hosting capacity) 15.83 7.37 43.18
C (250% of hosting capacity) 19.79 11.06 72.52

Table 5 shows the planning results with the PV curtailment option. Com-
pared to Table 4, it can be seen that the size of the installed ESSs increases
marginally from cases A to C, while the PV curtailment rises steeply. In

5https://www.strompreis.elcom.admin.ch/
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Table 5, the percentage of PV curtailment is defined as the ratio between the
curtailed PV energy and its total generation potential.

These results indicate that resorting to PV curtailment is ultimately
cheaper than installing ESSs. However, the non-zero ESS capacity still al-
located by the problem denotes that using ESS is still necessary to achieve
cost optimality. In order to investigate more this effect, a sensitivity of the
sizing requirements with respect to the cost of electricity will be presented
in 4.2.

Table 5: Total ESS sizes with PV curtailment.

Cases PV Total ESS PV Curtailment
(MWp) (MW) (MWh) (MWh) (%)

A (150% of hosting capacity) 11.88 2.96 4.35 32.38 7.41
B (200% of hosting capacity) 15.83 3.02 5.12 120.29 20.87
C (250% of hosting capacity) 19.79 3.40 5.78 221.97 30.83

Table 6 shows the optimal sizes and sites for case A (150% of hosting
capacity) with PV curtailment. Installation of ESSs is allowed at all grid
nodes; however, only 4 nodes are chosen as the optimal locations.

Table 6: Optimal decisions of ESS sizes and sites for case A (with PV curtailment).
ESS

Sites (MW) (MWh)
N6 0.33 0.38
N10 0.89 1.49
N11 0.99 1.08
N23 0.75 1.40
Total 2.96 4.35

Fig. 6 shows the power profiles of PV generation, load and ESSs power
for a single scenario with and without PV curtailment. In both the cases,
ESSs discharge during the morning and evening periods to supply demand,
and charge in the central part of the day to absorb PV generation. With PV
curtailment, PV generation is curtailed in the central hours of the day.

Fig. 7 shows the cumulative distribution function (CDF) of all voltages
and currents for all the timesteps, scenarios and nodes/lines. These results
are obtained by playing back the injections from the optimization into a
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Figure 6: Net aggregated power (MW) by the PV generation, ESS and demand with and
without curtailment shown in solid and dashed line for case A.

(a) (b)

Figure 7: CDF plots for (a) nodal voltages and (b) lines currents (in pu) for different
sizing schemes.

nonlinear load flow (6). Three cases are shown: both the curtailment and
ESS actions are considered (yellow line), only the PV curtailment action
is considered (orange), none of the two actions are retained (blue). It can
be seen that when both ESSs’ and curtailment actions are activated, lines
ampacity (whose limits are set at 0.8 pu in the optimization problem) are
respected tightly. Removing the ESSs’ injections from the problem leads to
mild infeasibility of the line current limits, and removing curtailment actions

6To verify the accuracy of linearized grid model in (9), we run non-linear AC power
flow (using Newton Raphson’s method) where the power setpoints from the newly sized
ESS and PV are imposed as power injections.
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too leads to severe overcurrents. Nodal voltage magnitudes feature similar
behaviors in all these cases, denoting that the critical bottleneck of this power
grid is the lines currents.

Table 7 compares the total objective cost in (14) for case A. It shows
higher costs when PV curtailment is not considered in the planning problem.

Fig. 8 extends this analysis to the different cases (A, B and C) of installed
PV capacity. It shows that including curtailment in the planning problem
achieves the lowest costs.

Table 7: Cost comparison for case A (with 11.8MWp PV).
ESS without PV ESS with PV

curtailment curtailment
ESS Investment (CHF)×106 6.11 2.29

Electricity (export) (CHF)×106 12.33 11.75
Electricity (import) (CHF)×106 46.36 36.75

Total cost (CHF)×106 40.14 27.28

Figure 8: Cost (Investment and electricity costs combined) comparison between planning
with and without PV curtailments.

4.2. Impact of electricity prices on ESS sizing

Because the economic viability of ESS is given in this paper by storing
and selling (otherwise curtailed) PV generation, it is interesting to investigate
the impact of the selling electricity price on the sizing results.
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In power system scenarios with significant levels of installed PV gener-
ation capacity, higher or lower levels of PV generation in the global energy
mix can impact the electricity price.

(a)

(b)

Figure 9: Impact of PV (in the generation mix) on electricity prices: (a) electricity price
change per % PV injection and (b) electricity price with different PV scenarios.

The authors of [33] have modeled this effect and estimated the electricity
price as a function of PV generation from data from the German and Aus-
trian electricity markets. Based on this model and assuming similar price
dynamics in Switzerland, we estimate the price evolution using following
linear expression

c̃ext = cext + p̂pvt ∆cext P
pv%
swiss (16)

where ∆cex (whose value is shown in Fig. 9a) is the change in electricity price
due to a 1% increase of PV generation in the countrywide generation mix,
and P pv%

swiss is the percentage of PV generation in the countrywide generation
mix. The resulting electricity prices for different proportions (5% - 40%) of
installed PV generation capacity in Switzerland is shown in Figure 9b. For
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computing the ESS sizes under different levels of installed PV generation
capacity, we consider the averaged electricity price in each case of Figure 9b.

Table 8 shows the ESS sizes (MW/MWh) and curtailment with different
price scenarios (P1 − P5) corresponding to different level of PV penetration
(3 - 24GWp) at the country scale. It can be seen that the electricity price
influences the sizes of the ESS installed in the grid. Compared to the base
case (scenario P1), scenario P5 results in a significant reduction of the ESS size
(50%, approximately). The reason for this is that the drop in the electricity
prices reduced the revenue from the exported electricity prices, consequently
reducing the investment in the ESS.

Table 8: ESS sizes (for case A) with changing electricity price.

Countrywide PV Export ESS PV
scenarios price sizes curtailed

Label P pv%
swiss(%) GWp CHF/MWh MW MWp %

P1 0 0 62.6 2.96 4.35 7.41

P2 5 3 60.2 2.91 4.30 7.45

P3 10 6 55.3 2.52 3.97 7.89

P4 20 12 50.4 2.20 3.57 8.42

P5 40 24 43.0 0.58 1.10 11.14

4.3. Impact of ESS costs on sizing

Cost of energy storage technologies (such as batteries and power-to-x
energy storage technologies) are projected to decrease in the future [34].
Table 9 shows the sizing results for ESS costs from 10% to 100% of the cost
figures assumed in the former results. As evident from the comparison, lower
costs lead to larger ESS sizes, reducing PV curtailment.

Table 9: ESS sizes (for case A) with varying ESS reservoir costs.

ESS cost ESS PV curtailed

scaling factor MW MWp %

0.1 4.87 8.58 3.38

0.5 3.70 5.90 6.21

1 2.96 4.35 7.41
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5. Conclusions

This work developed a planning tool for cost-optimally siting and sizing
energy storage systems considering the option of curtailable installed PV
production to respect the operational constraints of the power grid. The key
addressed question is whether it is more economical to curtail PV generation
as opposed to installing ESSs in the network. The methodology is a cost
optimization problem that maximizes the revenues of selling electricity to
the grid minus the capital investment for the ESS over a given planning
horizon subject to grid constraints, modeled using a linearized grid model
based on sensitivity coefficients. Energy storage provides active and reactive
power compensation in case of overproduction of the PV generation.

Results showed that curtailing PV generation is cheaper than installing
batteries. A sensitivity analysis showed that decreasing costs of energy stor-
age technologies could make installing energy storage cost-competitive com-
pared to curtailing PV generation.

Appendix A. Reformulation of the non-convex cost function

The cost function:

JOP(x) = [x]+cimt − [−x]+cext (A.1)

is non-convex because it is the difference of two convex functions. Since
[x]+ = x+ [−x]+, replacing it in (A.1) yields:

JOP(x) = (x+ [−x]+)cimt − [−x]+cext = (A.2)

= [−x]+(cimt − cext ) + xcimt . (A.3)

Appendix B. Validation of the linear grid model and convergence

We validate the linear approximations of the power flow against original
non-linear power flow equations. The comparison is performed in terms of
the modeling of voltage and current magnitude computed by the linearized
OPF model and the ones by the nonlinear true power flow. As mentioned
before, linear approximations of the power flow are corrected with updated
power injections of the sized ESS and PV till the optimization cost function
and ESS decision settles. Fig B.10 shows the flow diagram for convergence
of the planning problem. The convergence criterion is that the planning
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Convergence?
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Obtain ESS sizes and sites

End
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Initialization of power-flow sensitivity coefficients,
ESS resistance, ESS and PV injections

Solve ESS optimization problem eq. (14-15)

Run AC power flow using power injections from
sized ESS units and curtailed PV injections, update

sensitivity coefficients

Update ESS resistance using eq. (C.3)

Figure B.10: Schematic showing flow diagram of planning problem convergence.

objective does not change from one iteration to the next within a pre-defined
threshold value.

Fig. B.11 shows the convergence of sizes after 4 iterations. We compute
the empirical CDF plot of the voltage and current magnitude errors between
the linearized model and the AC power flow. The plots in Fig. B.12 show
that the error on the modelling of the voltages and currents are in the order
of 10−6 and 10−3, respectively. Thus, the linearized grid model based on
sensitivity coefficients represent true power flow equations within tolerance
bound of 10−3 pu.

Appendix C. ESS equivalent resistance

To determine the ESS resistance, we build upon the expression derived
in [35, 36], the ESS equivalent resistance in per unit (p.u.) is expressed as

Ress =
Eess

loss∑
T (pesst )2∆t

p.u. (C.1)

where Eess
loss refer to ESS losses.
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Figure B.11: Plots showing convergence of the ESSs power and energy sizes by correcting
the linear power flow coefficients with newest battery injections from previous iteration:

(a) (b)

Figure B.12: CDF plots (a) nodal voltages error and (b) branch current error.

Considering equivalence between the efficiency model and resistance model,
the resistance can be expressed in per unit (p.u.) we express Eess

loss = ηEess,
where η is efficiency obtained from the ESS and converter datasheets. With
this, the resistance can be expressed as

Ress =
ηEess∑
T (pesst )2∆t

p.u. (C.2)

To compute resistance valid for the worst case, i.e. when the ESS is mostly
operating at the full power, we can replace pesst by P ess. Under this assump-
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tion, the resistance is

Ress =
ηEess∑
T (P ess)2∆t

= Ress
0

Eess

(P ess
t )2

p.u. (C.3)

where Ress
0 is a constant, predetermined using manufacturer datasheet. Using

(C.3), it can be seen that ESS resistance is proportional to the ESS energy
size and inversely proportional to converter power rating. Therefore, for each
iteration in the planning problem when ESS energy and converter sizes are
updated, it uses (C.3) to update the resistance.

Appendix D. PV hosting capacity computation

We use the PV hosting problem of [20] that aims to maximize the PV in-
stallation within a grid considering the limits on the nodal voltages and lines
ampacities. The problem is maximizing total PV installation with decisions
P pv
n ,

maximize
{Ppv

n ∈R+,n∈N}

{∑
n∈N

γnP
pv
n

}
(D.1a)

where γn is yearly capacity factor per locations of the MV node (from PVGIS7)
to favour locations with higher insolation conditions. This problem is solved
with respect to grid’s constraints

(10a), (10b), (10c) (D.1b)

pt = ppv
t − pload

t t ∈ T (D.1c)

qt = ppv
t − qload

t t ∈ T (D.1d)

and maximum allowable PV (P
pv

n ) per MV node which is computed consid-
ering geographical constraints of the area. The constraint reads as

P pv
n ≤ P

pv

n (D.1e)

And the final constraint is PV generation modeled using irradiance scenarios,
it reads as

(12) (D.1f)

Above problem is linear and convex, and can be solved efficiently with any
solver.

7https://re.jrc.ec.europa.eu/pvg_tools/en/tools.html
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