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Optimized Planning of Chargers for Electric
Vehicles in Distribution Grids Including PV

Self-Consumption and Cooperative Vehicle Owners

Abstract—This paper presents a mathematical model to site
and size the charging infrastructure for electric vehicles (EVs) in
a distribution grid to minimize the required capital investments
and maximize self-consumption of local PV generation jointly.
The formulation accounts for the operational constraints of the
distribution grid (nodal voltages, line currents, and transformers’
ratings) and the recharging times of the EVs. It explicitly models
the EV owners’ flexibility in plugging and unplugging their
vehicles to and from a charger to enable optimal utilization
of the charging infrastructure and improve self-consumption
(cooperative EV owners). The problem is formulated as a mixed-
integer linear program (MILP), where nonlinear grid constraints
are approximated with linearized grid models.

Index Terms—Electric vehicles; Charging stations; Siting; PV
self-consumption.

I. INTRODUCTION

The increasing population of electric vehicles (EVs) mo-
tivated the necessity of developing an extended charging
infrastructure. According to [1], [2] in France, 2 billion euros
will be necessary to deploy 7 million public and private
chargers by 2030. Also, it is estimated in [3] that, during
2019-2025, more than 2 billion dollars will be necessary
to improve the public and residential charging infrastructure
across major metropolitan areas of the United States. A large
number of charging stations and the simultaneous charging of
many EVs might result in increased power flows, violating the
operational constraints of distribution grids (voltage levels, line
ampacities, and substation transformers rating). Thus, besides
the investment associated with developing the charging infras-
tructures, additional investments might be required to upgrade
and reinforce the grid infrastructures, especially distribution
grids. This motivates planning the EV charging infrastructure
(in terms of their locations in numbers) while cognizant of the
constraints of distribution grids and driving demand of the EV
owners.

A solution to reduce grid congestions and, at the same
time, reduce grid losses and improve the carbon footprint
of the recharging process is to charge EVs by using elec-
tricity produced by local photovoltaic (PV) generation. This
paradigm, known as PV self-consumption, has been widely
advocated in the literature as a way to integrate more PV
into existing distribution grids [4], [5], delaying expensive grid
reinforcement.

In this paper, we tackle planning the charging infrastructure
for EVs, namely establishing the location and number of
chargers in a distribution grid to satisfy the recharging demand
of the EV owners. The objective of the study is to ver-
ify whether optimizing the EV charging infrastructure under

different criteria leads to significantly different infrastructure
requirements. These different criteria are: minimizing the
total investment costs (i.e., chargers are planned to minimize
the capital investment), optimizing for PV self-consumption
(i.e., joint optimization of capital investments and facilitating
PV self-consumption), reduction of the cost of recharge for
end users (i.e., joint optimization of capital and operating
costs under time-of-use electricity tariffs), different levels of
flexibility of the EV owners in plugging and unplugging their
EVs into and from chargers, and duration of the parking
intervals.

The problem is formulated as a mixed-integer linear pro-
gram (MILP) whose formulation is adapted to capture the
different conditions described above.

The problem of planning the charging infrastructure for
EVs has been investigated extensively. The works in [6] and
[7] considered distribution grid and traffic flow models to
identify appropriate nodes where to allocate EV charging
stations with a genetic algorithm to tackle nonconvexities of
AC load flow models, however without considering PV self-
consumption and explicit models of the EV owners’ flexibility.
The work in [8] proposed a data-driven approach to identify
the driving demand and locations of the chargers without
however considering grid constraints, PV self-consumption
and EV owners’ flexibility. Works in [9], [10] proposed a
two-stage optimization framework to co-optimize the charging
infrastructure of EVs in combination with the operations of the
power and gas networks; however, the work does not specif-
ically address drivers’ flexibility and PV self-consumption.
The works in [11], [12] tackled planning of the charging
infrastructure without, however, including grid constraints, PV
self-consumption and EV owners’ flexibility. The work in
[13] proposes joint planning of EV charging stations and
distribution capacity expansion without, however, modeling
EV owners’ flexibility and PV self-consumption. In [14]
authors modeled the bounded rational charging behavior of EV
drivers and applied the behavior model in solving the planning
problem for EV chargers; this work did not investigate the
impact of PV self-consumption. A multi-objective planning
model for EV chargers is developed in [15]: even if this
work considers renewable generation with wind power, it does
not explore the impact of PV self-consumption or drivers’
flexibility. A multi-objective planning model for the layout of
an electric vehicle charging station is proposed in [16], without
considering the distribution grid’s operational constraints and
PV self-consumption. Recently, the work in [17] presented
a stochastic planning model for EV chargers, including PV
generation; however, this work does not investigate the impact
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of PV self-consumption modeling on the planning.
In view of the existing literature, the main contribution

of this paper is a quantitative investigation of the sensitivity
of the EV charging infrastructure to different optimization
objectives, including PV self-consumption. The question we
want to answer is whether changing the planning objective
leads to a substantially different charging infrastructure or
whether similar configurations of charging infrastructures can
be suitable to accommodate different objectives. This question
is of interest for urban planners or policymakers to identify,
for example, charging infrastructure that could become quickly
obsolete if planning objectives change over time. From a
methodological perspective, we introduce an extensible math-
ematical optimization model that can be used to perform this
analysis.

The rest of this paper is organized as follows. Section II
presents the problem statement and problem formulation.
Section III describes the case study, Section IV presents and
discusses the results, and finally Section V concludes the
paper.

II. PLANNING THE EV CHARGING INFRASTRUCTURE

The problem formulation aims to identify the location and
numbers of EV chargers in a distribution grid to satisfy the
EV owners’ driving needs while obeying the distribution grid’s
constraints. This formulation is then cast to achieve different
objectives:

• optimization of the total capital investments for the whole
charging infrastructure;

• optimization of the total capital investments in combina-
tion with fostering a charging infrastructure conducive to
promoting PV self-consumption;

• joint optimization of the capital and operational costs
(i.e., recharging costs for the EV owners considering
time-of-use electricity tariffs);

The adopted formulation explicitly models the flexibility of
the EV owners in plugging and unplugging their vehicles in
and from chargers. The reason for this is that more flexible
owners increase the utilization factor of the charging infras-
tructure, thus requiring planning fewer chargers for the same
charging demand.

The formulation of this paper modifies and extends the
planning method originally described in [18]. The methods
from [18] are summarized in this section for the sake of clarity;
the extension to PV self-consumption and joint optimization
of capital and operational costs, the main methodological con-
tributions of this work, is then discussed in sections (II-G) and
(II-H). The problem is formulated as a constrained economic
optimization program, as explained in this section.

A. Indexes and notation

Let v = 1, . . . , V denote the index of the EVs, t = 1, . . . , T
the index of the time interval, and n = 1, . . . , N the index
of the node of the distribution grid, where V , T , and N
are the total number of vehicles, time intervals and grid
nodes, respectively. With abuse of notation and more compact
expressions, we denote with subscripts nvt quantities for node

n, vehicle v, and at time interval t, and not the product among
these indexes; similarly for other subscripts.

B. Meeting the driving demand

The need to satisfy the driving demand is modeled by
requiring all vehicles’ state of charge (SOC) to be within a
given range at all time. Say SOCv(t) is the state-of-charge of
vehicle v at time interval t, this requirement reads as:

SOC ≤ SOCv(t) ≤ SOC, for all t and v (1a)

where parameters SOC and SOC denote feasible bounds of
the state-of-charge (e.g., 10% and 90% respectively).

The SOC’s evolution in time is modeled as a function of
discharging power (dictated by the driving demand) and the
recharging power (a variable of the optimization problem).
Formally, this is as:

SOCv(t) = SOCv(0) +
Ts

Ev

t−1∑
τ=0

(
η · pEV+

vτ − pEV−
vτ

)
, (1b)

where SOCv(0) is the initial state-of-charge, Ts is the integra-
tion time in hours, Ev is the energy capacity in kWh of the
battery of vehicle v, η is the charger efficiency, pEV+

vτ is the
recharging power, and pEV-

vτ is the discharging power.
Both pEV+

vτ and pEV-
vτ are non-negative and mutually exclu-

sive by construction (because an EV cannot be driven and
recharged at the same time), as it will be explained later. The
charging power pEV+

vτ is a variable of the optimization problem
and modeled as it will be described in (II-C).

The discharging power pEV-
vτ is an input of the problem

and thus assumed given. In this paper, it is estimated from
historical measurements of the EV state of charge: for this
reason, in (1b), it is not weighted by the efficiency. Input data
sets are discussed in the case study section.

The model in (1b) assumes constant battery voltage and
efficiency: it is commonly adopted in the literature because it
is linear in the recharging power (e.g. [19]). These assumptions
trade-off accuracy for increased model tractability and are
considered acceptable in a planning problem with sparse
temporal resolution (e.g., tens of minutes), as in this paper.

C. Modeling the charging power and constraints

This section explains how the charging power of the EVs,
i.e. pEV+

vt in (1b), is computed and vehicles’ recharging con-
straints.

We introduce the binary variable scharge
vt , that denotes

whether a vehicle v is charging at time interval t (if 1) or not (if
0). It is worth remarking that scharge

vt for all v and t are variables
of the optimization problem, meaning that their values are
an output of the problem and computed by the optimization
solver to meet problem’s constraints and minimizing the cost
function.

Say S̄ is a charger’s kVA rating and cosϕ its power factor.
Assuming the charger operates on-off, the EV recharging
power pEV+

vt is modeled as a function of scharge
vt as:

pEV+
vt = scharge

vt · S̄ · cosϕ, ∀t and v. (2)
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As a contribution of this paper compared to the former
formulation in [18], we model the capability of a charger to
modulate its output power. Assuming the charger works at
a constant power factor (regardless of its power output), the
previous model can be modified as:

0 ≤ pEV+
vt ≤ scharge

vt · S̄ · cosϕ (3)

We introduce the binary variable splugged
vt to indicate whether

a vehicle v is plugged into a charger at time interval t (if 1),
or it is not (if 0). splugged

vt is also a variable of the optimization
problem and is used to identify which chargers are occupied
at a given time interval t.

Some constraints apply to variables scharge
vt and splugged

vt to
ensure a logically meaningful model, as now discussed.

First, because an EV can charge only when it is plugged into
a charger, scharge

vt can be 1 only if splugged
vt is 1 too. Formally,

this reads as:

scharge
vt ≤ splugged

vt ∀t and v (4)

Second, a vehicle can be plugged into a charger only if it is
parked (plugged-in-only-if-parked constraint). Assuming that
the information on whether a vehicle is parked is available in
the following input information:

pnvt =

{
1, if EV v is parked at node n at time t

0, otherwise,
(5)

the plugged-in-only-if-parked is formalized as:

splugged
vt ≤

N∑
n=1

pnvt ∀t and v. (6)

Input quantities pnvt in (5) are assumed known from vehi-
cles utilization data or statistics. It is worth highlighting that
because a vehicle can be parked at one node only at a given
time, a property of the input information pnvt in (5) is that

N∑
n=1

pnvt ≤ 1 for all t and v. (7)

D. Need for chargers and capital investment for the charging
infrastructure

This section explains how the number and locations of the
chargers in the distribution grid is determined based on the
problem variables.

In words, the number of required chargers at a given grid
node is identified by evaluating the maximum number of
vehicles at that node which are simultaneously plugged into a
charger. We denote the number of chargers required at node n
by Schargers

n . Its formal definition is now introduced and then
explained:

Schargers
n = max

t

{
V∑

v=1

(
pnvt · splugged

vt

)}
, n = 1, . . . , N. (8)

Eq. (8) first computes the product between pnvt and splugged
vt for

a fixed node, time interval, and vehicle. This product enables
to link the vehicle (and whether it is keeping a charger busy
because plugged-in) with its position in the grid. Summing

over all vehicles for a fixed node and time tells the total
number of vehicles plugged into a charger at the grid location
n. Finally, the maximum operator computes the largest number
of vehicles plugged-in at node n over time, which is the
number of chargers that is necessary to have to satisfy the
demand for chargers at that node.

Based on the required numbers of chargers computed in (8),
one can estimate the capital cost of the charging infrastructure
as

J chargers =

N∑
n=1

γ · Schargers
n (9)

where γ is the unitary cost of a charger.
Naturally, Eq. (9) is the function to minimize to achieve

minimum costs of the charging infrastructure. It will be
used later to formulate the cost function of the optimization
problem.

E. Modeling plugging and unplugging behavior of EV owners

The plugged-in state of a vehicle does not depend only on its
parking state, as discussed above for (6), but also on whether
its owner is available to plug it into a charger (or unplug it
from a charger so as to make available the charger to another
EV owner). Because EV owners’ behavior ultimately affects
the utilization of the chargers, it also affects the number of
chargers to install, thus it is important to model this element.
In order to do so, additional (linear) constraints are added for
the variables splugged

vt .
We model two scenarios of EV owners’ flexibility: forgetful

EV owners and cooperative EV owners. To explain these
scenarios, we specifically refer to the case study considered in
this paper, which considers a trip-around home/work commute,
where EV owners drive their vehicles from an origin node
to a destination node in the morning, and then back to the
origin node in the evening. The scenarios are here explained
here verbosely. The notation and formulation are explained in
Appendix A.
Forgetful EV owners In both the morning and afternoon
commutes, owners plug their vehicles at the arrival time and
unplug them at the departing time. In these intervals, the
chargers are busy for the whole duration of the parking stay,
regardless of whether the vehicle charges or not.
Cooperative EV owners It is like the former case, except
that EV owners allow up to 1 floating disconnection in the
daytime parking interval to give the possibility of using that
charger to other vehicles as opposed to the possibility of
disconnecting only at the end of the morning period. It is
worth noting that, in the night-time parking stay, this flexibility
is not implemented as it is not considered practical for the EV
owners to unplug vehicles during night time.

F. Nodal injections and grid model

A nodal injection consists of the total charging demand of
EVs at that node, conventional demand connected at that node,



4

and local PV generation. It includes both active and reactive
parts. Nodal injections and their components are:

P node
nt = P demand

nt − P PV
nt + P EV

nt (10a)

Qnode
nt = Qdemand

nt +QEV
nt . (10b)

where P demand
nt , Qdemand

nt are the active and reactive power of
the total demand, P PV

nt is the PV generation (taken with the
negative sign because it is generation), and P EV

nt , Q
EV
nt are the

active and reactive power of the total EV charging demand at
node n and time interval t. PV plants are assumed operated
at a unitary power factor, so the reactive power contribution
of PV plants does not appear in (10b).

Quantities P demand
nt , Qdemand

nt , and P PV
nt are input information,

whereas P EV
nt and QEV

nt depend on the EV charging patterns and
are calculated as a function of the variables of the optimization
problem. In particular, P EV

nt is computed as:

P EV
nt =

V∑
v=1

pnvt · pEV+
vt for all t and n. (11)

The reactive power associated to the charging power (2) and
(3) is

qEV+
vt = pEV+

vt · tanϕ, ∀t and v (12)

and the total reactive power at node n associated to the
recharging demand is

QEV
nt =

V∑
v=1

pnvt · qEV+
vt for all t and n. (13)

Because the grid voltage is constrained in a small range to
respect statutory voltage limits, we use the approximation that
all power injections are voltage independent (1).

Once nodal injections are known, nodal voltage magni-
tudes vtn, current magnitudes itl in the lines with index
l = 1, . . . , L, and power flow at the slack bus St0 (assumed
in this case as the grid connection point) can be calculated
with load flow models as a function of the grid topology
and cable characteristic. Because load flows are nonlinear and
result in nonconvexities when included in an optimization
problem, we use a linearized model based on sensitivity
coefficients. Linearized grid models are indicated with the
following notation:

vtn = fn
(
P node
t1 , . . . , P node

tN , Qnode
t1 , . . . , Qnode

tN

)
(14a)

itl = gl
(
P node
t1 , . . . , P node

tN , Qnode
t1 , . . . , Qnode

tN

)
(14b)

St0 = hl

(
P node
t1 , . . . , P node

tN , Qnode
t1 , . . . , Qnode

tN

)
(14c)

where fn, gl, and hl are linear functions and highlight the
dependency between grid quantities and nodal injections. The
distribution grid’s operational constraints can be expressed as
(for all relevant indexes):

v ≤ vtn ≤ v (14d)

|itl| ≤ il (14e)

St0 ≤ S0, (14f)

1Voltage-dependent power injections could be accounted for by upgrading
the linear grid model, as proposed in [20].

where (v, v) are statutory voltage levels, il is cable l’s ampac-
ity, and S0 is the kVA rating of the substation transformer.

In addition to the constraints in (14), in order to capture
power limitations of the downstream electrical equipment (e.g.,
LV/MV transformers), we require nodal injections (10) to be
smaller than kVA limit of node S̄n:

(P node
nt )

2
+ (Qnode

nt )
2 ≤ (S̄n)

2. (15)

Constraint (15) is nonlinear. By assuming a worst-case sce-
nario of reactive power injections, we approximate (15) with
the following linear expression:

− S̄n · cosϕn ≤ P node
nt ≤ S̄n · cosϕn. (16)

where cosϕ is the lowest power factor of the nodal injection
at node n.

G. Joint charging infrastructure planning and PV self con-
sumption maximization

In this paper, we are interested in jointly optimizing the EV
charging infrastructure in terms of required capital investments
and PV self-consumption by shifting the recharging process of
EVs when PV generation is available.

PV self-consumption of EVs at the power grid nodes can be
promoted by incentivizing EVs to consume more power during
time intervals when there is local PV production and vice-
versa. This is modeled by minimizing the following objective
function:

JPV =

N∑
n=1

T∑
t=1

1

P PV
nt + ϵ

P EV
nt , (17)

where P PV
nt is PV generation (an input of the problem), ϵ is

a small coefficient to avoid dividing by zero when there is
no PV generation, and P EV

nt are the EV nodal injections, as
defined in (11), which are the variables in this expression.
In (17), when PV generation is available, recharging EVs
will not impact much on the cost function value, whereas
without PV generation, the cost function value will increase,
thus penalizing this action and ultimately fostering PV self-
consumption.

Cost functions (9) and (17) can be combined into a single
one as:

J total = J chargers + k · JPV (18)

where k is an input non-negative coefficient. The two com-
ponents of the cost function above are different in nature, as
the first is an economical cost and the second an incentive
with no specific economic meaning. The weight k determines
the importance of the terms. We note that when k = 0, we
purely seek to minimize the cost of the infrastructure, whereas
when k is large, the infrastructure is planned considering PV
self-consumption mostly.

Ideally, we are interested in a problem solution that is stable
for different values of k as this would indicate that the same
charging infrastructure can accomplish both infrastructure cost
minimization and PV self-consumption. In the results, we will
specifically discuss under which conditions this happens.
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H. Joint minimization of investment and operational costs with
time-of-use electricity tariffs

Capital investment and operational costs can be jointly
optimized by minimizing the following cost function:

J total = J chargers + α ·
N∑

n=1

T∑
t=1

P EV
nt · ct (19)

where ct is a time-of-use electricity tariff at time t (assumed
the same across the all grid) and the coefficient α (2)

α =
Service-life of chargers
Optimization horizon

(20)

is a scale factor to make the two costs comparable.

I. Formulation of the optimization problems
The variables of the problem are the plugged-in and charg-

ing binary variables introduced in II-C. They are collected in
the following vector x:

x = [scharge
11 , . . . , scharge

V T splugged
11 , . . . , splugged

V T ] ∈ ZV×T
2 , (21)

where Z2 = {0, 1} is the set of binary number. As explained
in the former sections, these variables are used to model
the charging process of the vehicles, the number of required
chargers, the nodal injections, EV owners’ flexibility, and
finally the grid constraints.

In addition to these variables, the initial state-of-charge
values in (1b) are also problem decision variables. They are
collected in the vector:

z = [SOC1(0), . . . ,SOCV (0)] ∈ RV . (22)

This is done with the objective of avoiding a problem solution
that is sensitive to input information. For this set of variables,
we also require the final SOC value to be larger than the initial
one to avoid benefiting from the initial energy stock:

SOCv(T ) ≥ SOCv(0), for all v. (23)

The problem formulation for the PV self-consumption con-
sists of minimizing the cost function in (18) over the decision
variables x and z:

min
x∈ZV ×T

2 ,z∈RV

{
J chargers + k · JPV} (24a)

subject to the following constraints

Plugged-in only if parked (6) ∀t and v (24b)
Charge only if plugged-in (4) ∀t and v (24c)
SOC model (1) and charging power (2) ∀t and v (24d)
Number of chargers model (8) ∀n (24e)
Forgetful (27) or cooperative owners (28) ∀v (24f)
Nodal injections (10)-(13) ∀t and n (24g)
Grid constraints (14) and (16) ∀t,n and l

(24h)

For the joint optimization of the capital and operational
costs, the problem is the same as above except for the cost
function that is replaced with (19).

2Discount rate is here neglected because it is not of primary interest in the
results comparison.

III. CASE STUDY

A. Power distribution grid

The grid is the CIGRE benchmark grid for MV systems
[21]. It is a three-phase 14-bus system (N = 14) with a
nominal voltage of 20 kV and connected with the upper-grid
level with two transformers, each serving a radial feeder, for a
total rating of 50 kVA. The system is modeled with a single-
phase equivalent model under the assumptions of balanced
loads and transposed cables.

The grid topology of the system is shown in Fig. 1. The
colored areas represent the parking locations of the vehicles.
In particular, the nodes in Cluster 1 (purple area) are where the
EVs are parked overnight, and those in Cluster 2 (green area)
are where EVs are parked during the daytime. The time-of-
use retail electricity tariff is approximated with the day-ahead
electricity prices obtained from [22] and shown in Fig. 2 for 24
hours. This 1-day-long profile is replicated 5 times to obtain
the profile of the 5-day-long optimization horizon adopted in
the optimization.

Load

Switch/CB

Cluster -1 

Cluster -2

Transformer

Bus

Fig. 1. Topology of the CIGRE European MV distribution network benchmark
for residential system [21].

1 3 5 7 9 11 13 15 17 19 21 23
0.3

0.35

0.4

0.45

Time (hour of the day)

C
/k

W
h

Fig. 2. Cost of the electricity in the month of July in France.

B. Nodal demand and PV generation

The nodal demand, P demand
nt and Qdemand

nt in (10a), is sim-
ulated considering the 1-day long load coincidence factor
described in [21], rescaled for the kVA nominal power of the
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nodes and then split into the active and reactive components
with the nominal power factor of the nodes. Both nodal power
factors and nominal powers are reported in Table I.

Table I shows the PV generation capacity installed at the
various nodes of the grid. A total of 400 kWp of PV generation
is installed in the network and connected to nodes 6, 10,
and 11, corresponding to nodes where EVs are parked during
the daytime. PV generation is simulated with first-principles
models starting from irradiance time series as described in
[23], considering clear-sky conditions and PV panels with tilt
and azimuth optimized to guarantee the largest yield over the
year.

TABLE I
NODAL NOMINAL DEMAND AND POWER FACTORS

Node Apparent Power Power factor Cluster PV Gen
[kVA] [kW]

1 15’300 0.98 - 0
3 285 0.97 1 0
4 445 0.97 1 0
5 750 0.97 1 0
6 565 0.97 2 150
8 605 0.97 1 0

10 490 0.97 2 200
11 340 0.97 2 50
12 15’300 0.98 - 0
14 215 0.97 2 0

C. Length of the optimization horizon

The length of the optimization horizon, T , is 5 days. The
time resolution of the time series is 1 hour. The 5-day-long
input time series are obtained by replicating 5 times the 1-day-
long nodal demand and PV generation trajectories. Despite the
short planning horizon and the single scenario of PV genera-
tion and demand, this configuration already allows capturing
the sensitivity of the charging infrastructure requirements with
respect to PV self-consumption, as discussed later, which is
the objective of this paper. More robust charging infrastructure
requirements can be obtained with extended planning horizons
and multiple scenarios of demand and PV generation, and it
will be considered in future works. It is worth highlighting that
the number of decision variables of the problem is proportional
to T ; because MILP problems are generally NP-hard, suitable
strategies to limit the number of samples, such as scenario
reduction techniques, should be identified to attain feasible
computational times.

D. Number of vehicles and charger properties

A population of 800 EVs with 60 kWh batteries is consid-
ered (V = 800). The daily recharging demand of the EVs
population is 17.1 ± 4.0 kWh (mean values and standard
deviation), estimated using data from [24]. The discharging
power pEV-

vt , used to model the state-of-charge evolution in
(1b), is positive and constant when the vehicle drives and
zero when the EV is parked; in addition, it is such that its
corresponding total energy amounts to the daily recharging

demand described above (at the net of the charger efficiency).
Level-1 chargers with a rating of 2.4 kVA are considered
(S̄ = 2.1 kVA). The power factor of these chargers is 0.95
(cosϕ = 0.95), their efficiency is 0.9 (η = 0.9), and unitary
cost is (γ = 11). Faster (and more expensive) chargers with
20 kVA rating were also tested, but they were not conducive
to improving performance (i.e., reducing capital investments
or improving PV self-consumption). The service life of the
charger is assumed 15 years.

E. Duration of the daytime intervals

The duration of the daytime parking intervals of the EVs
could impact the results of the planning problem and PV
self-consumption. In particular, longer daytime parking hours
would allow charging more EVs in the central part of the
day, coinciding with PV generation. In order to evaluate the
sensitivity of the results to the duration of the daytime parking
intervals, two scenarios are considered:

• base case parking stay: EVs are parked between 9 AM
and 4 PM (plus/minus 0.5 hours).

• extended parking stay: EVs are parked between 5 AM
and 8 PM (plus/minus 0.5 hours).

IV. RESULTS AND DISCUSSIONS

This section illustrates and compares the planning results
obtained by optimizing for PV self-consumption and for joint
capital and operational costs optimization. The optimization
problems were solved with a MIP gap of 5% to decrease the
computation time. Under this setting, both the problems took
nearly one hour to solve in a computer with an Intel Xeon
processor.

A. Optimizing for PV self-consumption

We first illustrate the impact of different values of k in the
cost function; as a reminder from the previous sections, the
coefficient k in (18) trades charging infrastructure costs for
PV self-consumption.

Fig. 3 shows the values of the two components of the
planning problem’s cost function in (18) for different values
of k, forgetful/cooperative EV owners, and base case/extended
parking intervals. The two cost components on the plot axis are
J chargers (capital investments required for the resulting charging
infrastructure) and JPV (achieved PV self-consumption, where
lower values denoted improved PV self-consumption, and vice
versa). Subfigures are now discussed in detail.

Fig. 3(a) shows that higher values of k attains lower
values of JPV (thus improving self consumption) but higher
infrastructure costs J chargers. This trend, found also in the
remaining plots of Fig. 3, is to be expected because larger
values of k in the cost function (18) gives more weight to PV
self-consumption, and less to decreasing infrastructure costs.

Fig. 3(b) shows the evolution of the costs when introducing
flexible drivers. Compared to Fig. 3(a), it can be seen that
capital investment are marginally decreased, especially for k ≥
0.

Fig. 3(c) shows the evolution of the costs with extended
duration of the daytime parking intervals for forgetful EV
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Fig. 3. Change in PV self-consumption JPV (lower values denote better
PV self-consumption) with the cost of the recharging infrastructure Jchargers,
for increasing values of k in different scenarios: forgetful EV owners (a),
Cooperative EV owners (b), forgetful EV owners with extended daytime
parking intervals (c), and cooperative EV owners with extended daytime
parking intervals (d).

owners. By comparing this figure against Fig. 3(a), it can be
seen that:

• extending the daytime parking intervals leads to better
PV self-consumption JPV, as visible for k = 0.

• the value of the costs components in Fig. 3(c) is not as
sensitive to variations of k as in Fig. 3(a).

Finally, Fig. 3(d) shows the evolution of the costs with
extended duration of the daytime parking intervals and flexible
EV owners. Compared to Fig. 3(b), it can be seen that
increased flexibility of the EV owners leads to a (marginal)
improvement of both the self-consumption and the infrastruc-
ture cost.

Tables II and III report the total number of installed chargers

with the base case daytime parking intervals, forgetful EV
owners, and increasing values of k when the recharging power
of the chargers is on-off and modulated (equations (2) and
(3)), respectively. It can be seen that the number of chargers
generally increases with larger values of k, inline with the
former discussion.

More interestingly, the two tables denote that the distribu-
tion of the chargers among clusters 1 and 2 changes between
k = 0 and k ≥ 0. In particular, with k = 0, chargers are
mostly installed in Cluster 1 (where EVs are parked overnight),
whereas with k ≥ 0, chargers are mostly installed in Cluster 2
(where EVs are parked during the daytime). This denotes that
promoting PV self-consumption from EVs requires developing
a more pervasive charging infrastructure in those nodes where
EVs are parked during the daytime.

Finally, it is also important to highlight that tables II and
III feature similar values and trends, denoting that on-off or
continuous modulation does not make a significant difference.
This can be explained by the fact that at the aggregated
level, modulating on-off a large number of vehicles will still
achieve efficient congestion management and that continuous
modulation might not be required.

TABLE II
TOTAL NUMBER OF CHARGERS AND DISTRIBUTION AMONG CLUSTERS

FOR DIFFERENT VALUES OF k, BASE CASE DAYTIME PARKING INTERVALS,
AND FORGETFUL EV OWNERS.

Node k = 0 k = 1 k = 10 k = 100 k = 1000
3 49 58 62 57 60
4 95 88 79 92 119
5 169 115 116 108 148
6 101 215 219 219 224
8 118 51 58 60 63
10 52 205 205 205 205
11 73 117 119 117 125
14 21 27 24 27 23

Total 678 876 882 885 967
Cluster 1 64% 36% 36% 36% 40%
Cluster 2 36% 64% 64% 64% 60%

TABLE III
TOTAL NUMBER OF CHARGERS AND DISTRIBUTION AMONG CLUSTERS

FOR DIFFERENT VALUES OF k, BASE CASE DAYTIME PARKING INTERVALS,
AND FORGETFUL EV OWNERS FOR MODULATED CHARGING POWER.

Node k = 0 k = 1 k = 10 k = 100 k = 1000
3 50 50 48 50 50
4 106 70 69 69 76
5 168 88 96 89 92
6 101 218 225 225 222
8 116 31 29 41 46
10 50 205 205 205 205
11 73 119 121 119 119
14 19 20 20 20 21

Total 683 801 813 818 831
Cluster 1 64% 30% 30% 30% 32%
Cluster 2 36% 70% 70% 70% 68%

Tables IV and V show the total number of chargers and
distribution between clusters 1 and 2 under the condition
when the parking intervals are extended for both forgetful
and cooperative EV owners, respectively, for increasing values
of k. It can be seen that, in both these cases, the charging
infrastructure is nearly entirely developed in Cluster 2, where
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EVs are parked for a longer duration during the daytime and
where PV is available. Compared to the cases in Table II and
III, it can also be seen that, for increasing values of k, first, it
does not significantly impact the distribution of the chargers
among the clusters, and second, it does not significantly impact
the total number of required chargers to be installed. The fact
that the properties of the charging infrastructure are similar for
different values of k denotes that an EV charging infrastructure
that is optimized for minimizing the investment cost is also
capable of delivering “good performance” in terms of PV self-
consumption.

TABLE IV
TOTAL NUMBER OF CHARGERS AND DISTRIBUTION AMONG CLUSTERS
FOR DIFFERENT VALUES OF k, EXTENDED PARKING INTERVALS, AND

FORGETFUL EV OWNERS.

Node k = 0 k = 1 k = 10 k = 100 k = 1000
3 1 0 0 0 0
4 23 17 18 19 18
5 2 1 0 2 0
6 198 199 210 215 218
8 2 1 1 0 0
10 120 120 125 138 169
11 117 129 129 129 129
14 53 52 52 52 52

Total 516 519 535 555 586
Cluster 1 6% 4% 4% 4% 4%
Cluster 2 94% 96% 96% 96% 96%

TABLE V
TOTAL NUMBER OF CHARGERS AND DISTRIBUTION AMONG CLUSTERS
FOR DIFFERENT VALUES OF k, EXTENDED PARKING INTERVALS, AND

COOPERATIVE EV OWNERS.

Node k = 0 k = 1 k = 10 k = 100 k = 1000
3 1 0 0 1 0
4 28 17 17 18 17
5 2 1 1 2 0
6 200 197 210 215 218
8 1 1 2 1 8
10 120 122 127 138 178
11 111 129 130 130 131
14 54 52 52 52 53

Total 517 519 539 557 605
Cluster 1 5% 4% 4% 4% 3%
Cluster 2 95% 96% 96% 96% 97%

B. Joint optimization of capital and operational costs

Table VI reports the number of chargers and their distri-
butions for both normal and extended parking intervals and
cooperative and forgetful EV owners. The following observa-
tions can be deduced:

• For the normal parking interval, chargers are predomi-
nantly present in Cluster 1, similarly to the case k = 0
in the former tables. However, the number of chargers,
in this case, is much higher than in former tables (about
twice as much). This can be explained by the fact that
the planning problem finds it convenient to install more
chargers in Cluster 1 (where EVs are parked overnight)
in order to access lower electricity costs.

• For extended daytime parking intervals, where cars are
parked longer in Cluster 2 and less in 1, chargers tend

to be installed more in Cluster 2 than in Cluster 1. This
is to be expected because installing chargers in Cluster 2
will enable access to lower electricity prices.

C. Comparison among all cases

Fig. 4 compares the percentage of chargers installed in
Cluster 1 versus the total number of chargers for all the
considered cases (for PV self-consumption, only the case for
k = 100 is considered). It can be seen that the difference
between cooperative and forgetful drivers is negligible when
the other features are the same. Thus, this factor does not affect
the charging infrastructure requirements in this case study.

It can be observed that the case with extended parking
intervals and PV self-consumption requires the smallest charg-
ing infrastructure, mostly developed away from Cluster 1
(i.e., in Cluster 2). The remaining cases feature a charging
infrastructure that is more similar with respect to each other,
so we can conclude that it is more robust against possible
changes of the planning objective as it features a more similar
distribution and a total number of chargers.

TABLE VI
DISTRIBUTION OF NUMBER OF CHARGERS FOR DIFFERENT PARKING

INTERVALS (800 EVS, 60 KWH BATTERY, 5 DAYS HORIZON, WITH
SERVICE LIFE FACTOR).

Normal interval Extended interval
Node Forgetful Cooperative Forgetful Cooperative

chargers chargers chargers chargers
3 100 100 47 47
4 168 168 109 109
5 243 243 185 185
6 215 215 215 215
8 196 196 143 143
10 205 205 196 196
11 103 103 115 115
14 48 48 62 62

Total 1278 1278 1072 1072
Cluster 1 55% 55% 45% 45%
Cluster 2 45% 45% 55% 55%

V. CONCLUSIONS

This paper presented a MILP problem to site and size the
EV charging infrastructure in a distribution grid to jointly
minimize the required capital investments and maximize self-
consumption of local PV generation. The formulation ac-
counted for the operational constraints of the distribution grid
(nodal voltages, line currents, and transformers’ ratings), the
EVs’ recharging demand, and the flexibility of the EV owners
in plugging and unplugging their vehicles.

A proof-of-concept by simulations was developed by con-
sidering the CIGRE benchmark system for MV grids, and
a sensitivity analysis was performed to verify the impact
of various factors on the planning results. Results showed
that with short daytime parking intervals, improving PV self-
consumption required installing more chargers (in addition
to those required for overnight charging), resulting in higher
infrastructure costs. However, when extending the daytime
parking hours, it was found that a charging infrastructure
developed in the nodes where EVs are parked during the
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plotted for k = 100.

daytime is sufficient to meet the total recharging demand,
ultimately leading to reduced EV charging infrastructure costs
and improved PV self-consumption. The intermittent PV gen-
eration thus may provide a different configuration of charger
distribution but certainly it will impact the planning results.
Also, it is observed that when the objective is to minimize
the nodal EV charging prices, it provides different results
and incurs higher costs for the installation of the chargers.
As a future work direction, one could embed all the sources
of uncertainty in a single optimization problem with the
objective of producing a charging infrastructure robust against
uncertainty.

APPENDIX A
MODELING EV OWNERS’ FLEXIBILITY

EV owners’ availability and flexibility in plugging and
unplugging their EVs into and from a charger, respectively, are
modeled by adding additional constraints on variables splugged

vt .
We start by modeling plugging and unplugging events into and
from a chargers, which are modeled by detecting rising and
falling edges of the variables splugged

vt as:

csvt = max
(
splugged
vt − splugged

v(t−1), 0
)

∀t and v (25)

dsvt = max
(
splugged
v(t−1) − splugged

vt , 0
)

∀t and v. (26)

We model two scenarios of EV owners’ flexibility: forgetful
EV owners and cooperative EV owners. To explain these
scenarios, we specifically refer to the case study considered in
this paper, which refers to a home-to-work-to-home commute,
where EV owners drive their vehicles from an origin node
to a destination node in the morning, and then back to the
origin node in the evening. For vehicle v, let the time interval
(τ

(2)
v , τ

(3)
v ) encompass the duration of the morning commute

and (τ
(4)
v , τ

(1)
v ) the duration of the evening commute for

vehicle v. The scenarios are as follows.
Forgetful EV owners In both the morning and afternoon
commutes, owners plug their vehicles at the arrival time and
unplug them at the departing time. In these intervals, the
chargers are busy for the whole duration of the parking stay,
regardless of whether the vehicle charges or not. This scenario
is enforced by allowing unplugging events at the vehicles’
departing times only (i.e., τ (2)v and τ

(4)
v ), and plugging events

at the vehicles’ arrival time only (i.e., τ (3)v and τ
(1)
v ). Formally,

this reads as the following set of constraints:

dsvt ≤ 0 for all t except t = τ (2)v and t = τ (4)v (27a)

csvt ≤ 0 for all t except t = τ (3)v and t = τ (1)v . (27b)

In words, connection and disconnection variables can become
active only in the four indicated time intervals; outside these
time intervals, binary connection and disconnection variables
are forced to zero, allowing no EVs to plug or unplug.
Cooperative EV owners It is like the former scenario,
except that EV owners allow up to 1 floating disconnection
in the daytime parking interval (i.e., between τ

(3)
v and τ

(4)
v )

to give the possibility of using that charger to other vehicles
as opposed to the possibility of disconnecting only at τ

(4)
v .

It is worth noting that, in the night-time parking stay, this
flexibility is not implemented as it is not considered practical
for the EV owners to unplug vehicles in the middle of the
night. Connection and disconnection constraints read as:

csvt ≤ 0 for all t except t = τ (1)v (28a)

dsvt ≤ 0 for all t except t = τ (2)v (28b)
τ4∑

t=τ3

dsvt ≤ 1. (28c)
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