
Solar Irradiance Estimations for Modeling the Variability of Photovoltaic
Generation and Assessing Violations of Grid Constraints: a Comparison
between Satellite and Pyranometers Measurements with Load Flow
Simulations

Fabrizio Sossan,1, a) Enrica Scolari,2 Rahul Gupta,2 and Mario Paolone2
1)Centre Procédés, Energies Renouvelables et Systèmes Energétiques (PERSEE), Mines ParisTech,
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Global horizontal irradiance (GHI) is typically used to model the potential of distributed
photovoltaic (PV) generation. On the one hand, satellite estimations are non-pervasive
and already available from commercial providers, but they have a limited spatiotemporal
resolution. On the other hand, local estimations, e.g., from pyranometers, sky-cameras and
monitored PV plants, capture local irradiance patterns and dynamics, but they require in-
situ monitoring infrastructure and upgrading the asset of electrical operators. Considering
that in most power systems, PV generation is typically the aggregated contribution of many
distributed plants, are local GHI estimations necessary to characterize the variability of the
power flow at the grid connection point (GCP) and detect violations of the limits of voltages
and line currents accurately? To reply, we consider GHI measurements from a dense network
of pyranometers (used to model the ground truth GHI potential), satellite estimations for the
same area, and information about a medium and low voltage distribution system. We perform
load flows at di↵erent levels of installed PV capacity and compare the nodal voltages, line
currents, and the power at the GCP when the irradiance is from pyranometers and when from
satellite estimations, deriving conclusions on the necessity, or not, of highly spatiotemporally
resolved irradiance estimations.

I. INTRODUCTION

Current operational practices of electrical distribution
utilities related to PV generation typically involve the use
of solar irradiance estimations to evaluate its production
potential. The kind of estimations usually depends on
the level of aggregation. Distribution system operators
(DSOs) typically use model-based estimates of PV gen-
eration for feasibility studies when connecting new PV
power plants to verify that the grid can withstand the
power injections without determining violations of statu-
tory voltage limits and cables’ ampacities (see e.g.1). Ir-
radiance forecasts might be relevant for DSOs to schedule
the operation of utility-scale storage facilities to mitigate
the impact of PV generation on their grids, or if specific
grid codes (see, e.g., the notion of balance group in the
Swiss grid code2) to improve the forecast of their aggre-
gated demand when they are penalized for incurring in
unbalances.

At the level of the transmission system operators
(TSOs) and load balance responsible, the need for fore-
casts of stochastic generation and demand stems from the
requirements of dispatching conventional power plants
and allocating power reserves in day-ahead and intra-day
markets, typically at 1-hour or sub-hour resolution; due
to the low time resolution of the dispatch processes, ir-
radiance estimations from numerical weather predictions

a)Electronic mail: fabrizio.sossan@mines-paristech.fr.; Formerly at
DESL, EPFL.

(NWPs) fed by satellite information may be used (e.g.,3).
However, future increased generation capacity levels

from renewables and reduced values of system inertia will
determine more significant reserve requirements and the
compression of the time scale at which ancillary services
need to be delivered. Future grid codes will promote the
development of markets for enhanced regulation and con-
gestion management (e.g.4,5), fostering the participation
of distributed energy resources, including renewable gen-
eration, in the provision of grid ancillary services. Since
PV generation is the fastest-growing among stochastic
renewables in distribution grids, it is relevant to won-
der whether satellite estimations will be able to capture
PV production patterns accurately or if local estimations
should complement them.
To reply to this question, we consider a low voltage

(LV) and a medium voltage (MV) distribution feeder,
and GHI estimations from both a dense network of pyra-
nometers and satellites overlaid on a common geograph-
ical meshgrid. With load flow simulations, we determine
nodal voltages, line currents, and power flows in the grids,
first, when GHI is from pyranometers measurements (i.e.,
ground-truth case) and, second, with satellite estimations
and compare the results. The comparison is performed
from two standpoints: an analysis on the nodal volt-
ages and lines currents to verify whether they respect
the prescribed limits (i.e., a critical operational concern
for distribution system operators), and evaluation of the
volatility levels of the power flow at the grids’ connection
points (i.e., relevant in the context of scheduling power
reserves).
The use of local and satellite estimations of GHI was
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considered in the existing literature in application to
power system studies, however little e↵ort was devoted to
comparing their performance and to understand whether
higher or lower spatiotemporal resolution plays a role.
For instance, Ruf et al.6 compare the total power produc-
tion of a cluster of PV plants spread on a 0.6⇥0.7 km area
against HelioClim-3 v.5 (HC3v5 ) estimates and ground
observations from a single weather station at 11 km dis-
tance; they conclude that satellite estimations lead to
a better performance than distant local observations.
Leloux et al.7 used satellite GHI estimates to charac-
terize the performance of PV plants, with no focus how-
ever on grid voltage and current constraints and without
considering local irradiance measurements. Conversely,
Nguyen et al.8 discusses applying local GHI measure-
ments to determine the PV hosting capacity of MV grids
and the position of on-load tap changer transformers for
voltage regulation, with no performance comparison with
satellite estimations. Rikos et al.9 investigates the use
of satellite estimations to characterize the variability of
PV generation and anticipate shortcoming of generation,
concluding that preemptive control based on early warn-
ings from satellites are possible if below critical levels of
installed PV capacity and ramping rates of PV genera-
tion, with no performance comparison against local GHI
estimations. Lave et al.10 propose a model to character-
ize the geographical smoothing of distributed irradiance
time series based on measurements from 6 pyranometers
within 3 km distance. They observed that the variance
of the spatially averaged series is six times smaller than
single series for time scales up to 256 sec; above that, the
spatial smoothing e↵ect decreases due to series becoming
more correlated.

The main contribution of this paper is a quantitative
comparison of the performance of satellite versus local es-
timations of GHI for detecting grid-constraint violations
and estimating the variability at the GCP. As specific
numerical findings depend on the topology and physical
characteristics of the lines, it is generally not possible to
derive analytic principles to determine apriori whether
the use of readily available satellite estimations is reli-
able. However, the proposed results provide useful indi-
cations to determine whether local estimations should be
considered.

The remainder of this paper is organized as follows.
Section II describes the modelling principles and GHI
data sources, Section III details the metric adopted for
the comparison, sections IV and V presents and discusses
the results, and Section VI outlines the conclusions.

II. SIMULATION MODELS AND DATA

A. A common geographical reference for measurements
and networks

To the best of our knowledge, an experimental setup
with geolocated information on both the electrical grid
infrastructure and local irradiance is not publicly avail-
able at the time of this study. Thus, we collect informa-
tion from di↵erent sources and overlay them on a com-

mon geographical mesh grid, as shown in Fig. 1. This
allows to establish the link between GHI and grid topolo-
gies (as explained in Section II E), and to calculate the
PV generation at each node. There are 3 layers of infor-
mation: electrical networks, GHI pyranometer measure-
ments, and GHI satellite estimations. The geographical
area of interest extends for approximately 48 km2. A
mesh grid with 0.040 km resolution (this approximates
the smallest distance in the model, i.e. the 0.035 km
long segments of the LV grid) is overlaid on the area and
used to compute a uniform map of approximated GHI
with nearest-neighbor (NN) interpolation. The time res-
olution of the time series is 30 s, chosen as a trade-o↵
between capturing fast GHI fluctuations, and tractable
computational times.
The specifications of the benchmark electrical systems

(described in Section II B) do not report the position of
the nodes but only the lines length; these are used to
establish the relative positions of the nodes with respect
to each other; once they are determined, the location of
the grids as a whole is chosen so that each falls in the
perimeter delimited by the outermost pyranometers so
to guarantee reliable GHI interpolations.

FIG. 1. Location of pyranometers and electrical networks.

The zoomed region shows the LV grid. Information are from

di↵erent sources and overlaid on a common geographical mesh

grid.

B. Electrical networks

a. LV and MV systems To reflect the two main-
stream trends for the connection to the grid of PV plants
(i.e., utility-scale and rooftop installations), we consider
a medium voltage (MV) and a low voltage (LV) distribu-
tion system, modeled according to the CIGRE specifica-
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FIG. 2. Locations and labels of the pyranometers, MV nodes (in the left plot), and LV nodes (right). Excluded pyranometers

refer to units that occasionally underestimated irradiance and were disregarded, as explained in the text. The distance between

nodes {2, 3}, {7, 8}, and {4, 5} is less than the meshgrid resolution and share the same location on the meshgrid.

tions for the European grid benchmarks for three-phase
MV and LV distribution systems11 (figures 4 and 5). The
MV grid is a 14-node 20 kV/25 MVA meshed system; the
LV grid is an 18-node 0.4 kV/400 kVA radial system. The
power flow at the GCP, nodal voltages and line currents
of each grid are computed with single-phase load flows
as a function of the grid admittance matrix and nodal
injections. We thereby assume balanced three-phase sys-
tems: the inclusion of unbalances in the system is not
of particular interest as most of the PV installations are
interfaced to the grid with three-phase power converters.
The nodal injection at each node is the algebraic sum of
the electrical demand and PV generation, determined as
discussed in the next two paragraphs.

We assume that excess PV generation flows in the
upper-level grid. PV self-consumption schemes are not
considered because not relevant in the context of com-
paring local versus satellite estimations.

b. Demand profiles In-line with the CIGRE
specifications11, the active power demand at the nodes
is modeled by scaling the time series shown in Fig. 3
for the nominal demand of each node (reported in
tables I and II) and according to the type of load (i.e.,
domestic or commercial). The same re-scaled series
is applied to the demand at all nodes by considering
perfect correlation among them. This choice is because
our focus is comparing the e↵ects of using satellite
estimations against using local irradiance, and modeling
spatial correlation would introduce a new element of
variability in the analysis. Reactive power injections
are modeled using a constant power factor, reported in
Table I.

c. PV generation CIGRE specifications11 include a
moderate quantity of connected PV generation capacity.
To reproduce a future scenario with large installed capac-
ity levels of PV generation, we apply a procedure simi-
lar to work12 to determine the maximum PV installed
power than the grid can host without violating grid con-
straints (i.e., so-called PV hosting capacity of the grid).
We consider fixed (non-tracking) PV plants. Nominal
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FIG. 3. Active power profiles of the demand in per unit (pu)

of the nominal value of the demand.

capacity, and tilt and azimuth per node are specified in
tables I and II . Plants’ tilt and azimuth are, for the MV
grid, the same for all the plants and optimized to achieve
the highest yearly capacity factor, as typical for large-
scale installations. For the LV grid, they are randomly
distributed around the optimal configuration to account
that in LV feeders PV generation is typically from non-
uniform rooftop installations. The output of each PV
power plant is determined as a function of its installed
capacity, tilt and azimuth, and local GHI as detailed in
Section IID. PV plants are assumed operated at unitary
power factor.
In addition to the case where the grid is at the limit

of its PV hosting capacity (that we denote as Scenario
33), we consider a more extreme second case where the
PV installed capacity at each node is scaled by factor 4/3
to analyze the sensitivity of the results with respect to
the amount of PV generation (Scenario 43).

C. Data sources for the global horizontal irradiance

We describe here the irradiance estimations and mea-
surements processing. We introduce the following nota-
tion: t = 1, 2, . . . , T denotes the index of the T time inter-
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TABLE I. MV grid: nominal loads, power factor (pf ), PV

installed capacity at STC, and ID and distance of the nearest

pyranometer per node.

Node Demand PV Generation Nearest

Residential Commercial Power pyranometer

MW pf MW pf MWp ID dst (m)

1 15.3 0.98 5.1 0.95 5.71 10 700

2 0 – 0 5.02 49 769

3 0.28 0.97 0.26 0.85 4.39 77 256

4 0.44 0.97 0 – 2.23 86 126

5 0.75 0.97 0 – 1.28 26 165

6 0.56 0.97 0 – 0.09 86 268

7 0 – 0.09 0.85 0 78 544

8 0.6 0.97 0 – 0 78 641

9 0 – 0.67 0.85 1.13 89 400

10 0.49 0.97 0.08 0.85 1.62 91 200

11 0.34 0.97 0 – 5.71 91 89

12 15.3 0.98 5.28 0.95 5.71 55 408

13 0 – 0.04 0.85 0 59 322

14 0.22 0.97 0.39 0.85 5.02 18 544

Total 34.28 11.91 37.91

TABLE II. LV grid: nominal load, power factor (pf ), installed
capacity at STC and configuration (i.e., azimuth and tilt) of

PV generation, and ID and distance of the nearest pyranome-

ter per node.

Node Demand PV Generation Nearest

Residential Power Azimuth Tilt pyranometer

kW pf kWp � � ID dst (m)

1 200 0.95 227 167 34 75 80

11 15 0.95 114 161 43 75 165

15 52 0.95 107 185 38 75 165

16 55 0.95 112 182 42 86 113

17 35 0.95 26 190 41 86 80

Total 404 586
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;

breaker S1 is operated closed.

vals, d = 0, 1, . . . the index of the day, and p = 1, . . . , 99
the index of the pyranometers location; the time index
t is split into daily sequences Dd for d = 0, 1, . . . that
groups the indexes of all time intervals of day d. Pyra-
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nometer and satellite estimations for time t and location
p are respectively denoted by xtp and x̂tp.

1. Pyranometers measurements and processing

a. Data selection Pyranometers data are from the
HOPE measurements campaign13 and refer to the period
from 2 April to 24 July 2013. The setup included 99 open-
field installations with silicon photodiode pyranometers
distributed over an area of approximately 48 km2. Mea-
surements were labeled with quality flags according to
the cleanliness of the sensor and horizontal alignment.
We consider measurements marked as good and low in-
cident angles with solar zenith angle smaller than 70� to
avoid inaccurate readings. To filter out potential other
bad data, we remove GHI values within a ±30 s range
from a missing or non-valid data point. Additionally,
we verify the presence of pyranometers with outlier mea-
surements with respect to others and exclude them as

explained next. Let x(d)
p be the reading of pyranometer

p averaged over day d, formally:

x(d)
p =

1

|Dd|
X

t2Dd

xtp, (1)

where |Dd| denotes the number of elements in Dd, and
x̄d the average over space:

x̄d =
1

99

99X

p=1

x(d)
p . (2)
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Daily average series x(d)
p , d = 1, 2, . . . are normalized by

applying x̄(d)
p = x(d)

p /x̄d, that essentially tell us how a
measurements of a pyranometer compare with respect to
average. The cumulative distribution function (CDF) of

x̄(d)
p , 8p, d is shown in Fig. 6. It was observed that pyra-

nometers number 38, 43, 58, 60, 71, 72 (shown in Fig. 2)
occasionally underestimated the irradiance with respect
to others; setting up an empirical symmetrical acceptance
range 0.75-1.25 (shown with the dashed lines in Fig. 6 and
that contains 99.5% of the measurements) was enough to
exclude them. Variations around 1 in Fig. 6 can be ex-
plained by local weather patterns and non-uniform cloud
passing over the area. To avoid periods with spatially
sparse measurements, we consider time intervals where
at least 70% of pyranometers are available.

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
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0.2

0.4
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Normalized Daily Irradiance
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FIG. 6. CDF of normalized daily irradiance recorded by the

pyranometers after filtering outliers.

b. Data processing GHI, originally at 1 Hz, is down-
sampled to 30 s by decimation (samples average would
smooth quick variations) to reduce the number of load
flows to perform, and NN interpolation is applied to com-
pute one data-point per pixel of the mesh grid. It is worth
noting that, on the one hand, temporal down-sampling
reduces temporal variations, thus biasing the analysis in
favor of satellite estimations. On the other-hand, spatial
NN interpolation exacerbates spatial correlation, thus bi-
asing the results in favor of pyranometer estimations.

c. Accuracy of measurements Madhavan et al.13

characterize the accuracy of pyranometers readings and
report uncertainty levels of ±4.4 and 35.5 Wm�2 at 50
and 1000 Wm�2, respectively, and zenith angle smaller
than 70�, i.e., ±8% and 3.5%. We anticipate that, as
it will be shown in Section IVC, the impact of mea-
surements uncertainties on the performance assessment
is negligible.

2. Satellite estimations

a. Data selection and processing We use commercial
HC3v5 GHI estimations from Soda Service. They are
obtained by estimating the clear-sky index using 15-min
resolution satellite images from second generation Me-
teosat, applied to McClear’s clear-sky model including
information on water vapor, aerosols, and ozone levels.
The commercial provider achieves a higher time resolu-
tion with an interpolation procedure14 that considers the
position of the sun in the sky, but not cloud movements.
We query data at a 1-min resolution for each pyranome-

ter location. We achieve the target 30-sec resolution with
linear interpolation.
b. De-biasing Vernay et al.15 correct the bias with

a non-linear regression model fitted on a year of ground-
based GHI measurements. This procedure is not appli-
cable here because pyranometer data are for 4 months.
Alternatively, we correct the bias by subtracting, for each
pyranometer location, the di↵erence between the satellite
estimation for that location and the ground-based mea-
surements, averaged on a daily basis, as explain next.
The error of satellite estimation is:

etp = x̂tp � xtp (3)

The daily bias is the average of the error over one day:

e(d)p =
1

|Dd|
X

t2Dd

etp. (4)

Satellite estimations are de-biased by applying:

bx0
pt = bxpt � e(y(t))p , (5)

where y(t) denotes the index d of the day to which time
interval t belong (y(t) = d | t 2 Dd). Fig. 7 shows the
empirical probability distribution function of the error
of debiased satellite estimations: variations around zero
reflect inaccuracies due to, e.g., reduced spatiotempo-
ral resolution and parallax, as for instance reported in
work16. Fig. 8 shows the standard deviation of the error
as a function of the pyranometer location: the variabil-
ity is within the range 125-145 Wm�2. It indicates that
the variations of the satellite estimation error is nearly
uniform over space. This can be explained by the move-
ments of clouds that determine similar shading patterns
on the area over time and comparable levels of variability
across locations.
The de-biasing process (3)-(5) might be inaccurate for

late morning and evening hours, when irradiance values
are lower than for the rest of the day. However, irradi-
ance values with zenith angle larger than 70 degrees are
removed. Moreover, in the context of the proposed anal-
yses on variability and violations of grid constraints, low
irradiance values are not expected to play a relevant role.

It is also worth noting that the process (3)-(5) is not
viable in real-time applications because it is non-causal
(it entails calculating the bias before knowing the real-
izations) and requires a dense network of measurements,
that is generally unavailable. However, as the compari-
son focuses on quantifying the e↵ect of spatial resolution
and not of bias, we consider ideally de-biased satellite
estimations.
c. Quality of satellite estimations Qu et al.17 com-

pare HC3v5 estimations against ground-based measure-
ments from 23 sites and report relative bias and rRMSE
in the ranges -4/4% and 14/38%. The same metrics (de-
fined in work17) calculated for the current case study
score in the ranges -7/3% and 28/41% at 15 min resolu-
tion, in-line with results reported in the literature.
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D. Computation of the nodal PV injections

Wemodel PV generation with the empirical model18–20

that accounts for the temperature e↵ect by scaling the
value of the POA irradiance. Let b denote the index of
the electrical nodes, t the time interval, I(�b)

t in Wm�2

the POA irradiance. The PV generation and the cell
temperature of the PV plant at node b and time t are
modeled by (assuming constant unitary e�ciency with
respect to the irradiance21):

PV b
t =

I(�b)

1000

h
1 + �

⇣
T (b)
cell,t � 25�

⌘i
P (b)
nom (6)

T (b)
cell,t = T (b)

air,t + �I(�b)
t , (7)

where P (b)
nom is the nominal capacity at the standard

test condition (STC), Tair,t is the air temperature from
measurements, and � = 0.038 and � = �0.0043
are plant-specific parameters which were obtained by
averaging the values for the close roof mount and
open rack configurations22 and values for polycrystalline
modules23, respectively.

The POA irradiance I(�b)
t is computed by applying

a transposition model as a function of the GHI, plant
tilt/azimuth and time of the day as described in II E 0 b.
In turn, the GHI at the location b of the plant is com-
puted as described next.

E. Computation of plane-of-array irradiance

This step allows us to establish the link between plant
position and georeferenced measurements of the GHI and
to determine the POA irradiance of each PV plant. For
each plant, we determine first the geographical coordi-
nates in the mesh grid that encompass its full extension

as a function of the PV capacity. These coordinates are
used to query GHI with the nearest neighbor interpola-
tion scheme. Finally, GHI is transposed to get the POA
irradiance. This whole process is detailed in the follow-
ing.
a. Computation of GHI We first retrieve the coor-

dinates of the pixels encompassing the full extension of
the PV plant as a function of its nominal power capac-
ity. For convenience, we assume square PV plants and
centred on the pixel of the electrical node to which they
are connected. The pixels which include the plants’ ex-
tension are identified starting from the plant location by
performing consecutive iteration of morphological dilata-
tion until the pixels span an equal or larger area than
the plant footprint area (see Fig. 9). Assuming horizon-
tal panels, the footprint area Ab (m2) of a plant with

capacity P (b)
nom is approximated by:

Ab = P (b)
nom/d, (8)

where d = 0.15 is the PV conversion e�ciency. The plant
area in number of pixels approximated to the nearest
larger integer is:

nb = ceil
�
Ab/r

2
�
, (9)

where r is the resolution of the meshgrid in meters. Let
(ib, jb) be the coordinates of bus b, k a non-negative in-

teger denoting the algorithm iteration, S(b)
k the set of

coordinates at k, � the Minkowski sum, 13⇥3 the all-one

3⇥3 matrix , and |S(b)
k | the cardinality, or number of ele-

ments, of S(b)
k . The set of pixel coordinates that contains

the PV plant at node b (i.e., gray pixels in Fig. 9) is found
by:

S(b)
0 = {(ib, jb)} (10)

Repeat for k=1,2,. . .

S(b)
k = S(b)

k�1 � 13⇥3 (11)

Until

|S(b)
k | � nb. (12)

Once the set is found, it is used to query the GHI values
at each coordinate following the nearest neighbor inter-
polation scheme. GHI values are finally averaged to get
equivalent value for the whole plant. Partial shading ef-
fect will be considered in future works where more dense
measurements will be available.
b. Computation of POA irradiance For transposing

irradiance starting from the GHI, we adopt the modeling
tool-chain implemented in PVlib24 to allow reproducibil-
ity of the results. For the computation of the direct
normal irradiance from GHI, we use the DISC model25.
For transposition as a function of the panels tilt and az-
imuth of each plant, we use the anisotropic Hay-Davies
model26, which is known to have better performance than
isotropic models27. Results were also tested for the Perez
model28; the change of the transposition model (that is



7

1st cicle of

iteration (light

gray pixels)

2nd iteration of

dilation (dark

gray pixels)

Center of

the PV plant

(green pixel)

Boundary of

the PV plant

(green line)

x -coordinate

y
-c
o
o
rd

in
a
te

FIG. 9. A geographical mesh-grid with the PV plant location

(green pixel), plant boundary (green line) and set of pixels

encompassing the plant extension (gray and light gray pix-

els), obtained, in this case, with 2 iterations of morphological

dilation.

known to be a critical component, see e.g. work29) was
however found to impact results marginally, with slight
changes on false negative detections and unaltered levels
of variability-underestimation factors.

III. METRICS FOR THE COMPARISON

The objective of the comparative analysis is to evaluate
whether the use of satellite estimations leads to under-
estimate reserve capacity requirements and if they can
detect violations of grid constraints reliably.

For the former objective, we rely on the notion of vari-
ability of the power export, and we verify whether satel-
lite estimations can record, or not, the same levels of
variability as pyranometers. For the latter, we verify
whether satellite estimations can correctly detect viola-
tions of grid constraints, and we analyze durations and
inter-arrival times of false detections. The metrics are
described in the following.

a. Variability-underestimation factor of satellite esti-
mations Let x be a time series (for instance, irradiance)
with elements x1, x2, . . . and x̄ its moving average on a
15-minute interval. We define the variability of x as the
square root of the variance (Var) of the di↵erence of the
two series

variability(x) =
p
Var (x� x̄), (13)

where � is element-wise di↵erence among vectors. In
words, we say that (13) measures the intensity of the
variations of x around a trend. Let xpyr and xsat re-
fer to estimates from pyranometers and satellite, respec-
tively. The variability-underestimation factor is the ratio
between them:

variability-underestimation factor(x) =

=
variability(xpyr)

variability(xsat)
.

(14)

To further exemplify, we could assume that the vari-
ability is the metric that a TSO/load balance respon-
sible uses to allocate power reserves. For instance, the
higher the variability is, the larger the reserves should
be. Assuming that the TSO uses satellite-derived infor-
mation to allocate reserves capacity, the variability un-
derestimation factor (14) can be interpreted as a scale
coe�cient that denotes the “inadequacy” of the allo-
cated reserves with respect to real requirements. The
variability-underestimation factor is calculated for the
active power flow at the grid substation transformer (de-
noted by Power at the GCP), i.e., the quantity that a
TSO would use to allocate reserve capacity. In addition,
for the sake of following analysis, it is computed for the
following time series:

• Spatially averaged GHI: GHI at the PV plants’
locations averaged over all locations. It allows to
compare the quality of satellite estimations com-
pared to those of pyranometers;

• Spatially averaged POA: POA irradiance on PV
plants’ panels averaged over all locations. It allows
to verify how the transposition model a↵ects vari-
ability;

• Total PV production: the sum over all the plants
of the PV power output. It allows to verify how lo-
cal irradiance patterns are transformed in PV gen-
eration accounting for the modeled spatial distri-
bution of PV panels;

b. False positive and negative detections of grid con-
straints violations A voltage violation occurs when the
voltage magnitude at any node of the network is out-
side the range 0.9-1.1 pu. As we consider single-phase
equivalent load flows and PV generation (i.e., voltage
magnitudes monotonically increase with active power in-
jections), violations occur in the form of trespassing the
upper-bound 1.1 pu; we refer to this as over-voltage. A
violation of a cable’s ampacity limit occurs when its cur-
rent magnitude exceeds 1 pu; we refer to this as over-
current. For assessing the quality of satellite estimations
in detecting over-currents and over-voltages, we intro-
duce the notion of false negative and false positive. A
false negative is when satellite estimations do not lead to
a constraint violation and the pyranometers estimations
do. A false positive is when satellite estimations lead to a
constraint violation and the pyranometers estimations do
not. False negatives are normalized by dividing for the
total number of true positives, and false positives for true
negatives. From a grid operator’s perspective, false neg-
atives are more of a concern than false positives because
over-currents eventually lead to destroying cables.
c. Duration and inter-arrivals of false negative events

It is of interest to characterize the duration of groups
of false negatives and the inter-arrival between them to
understand whether false detections tend to be sporadic
or instead persistent over specific time intervals. The
notion of duration and inter-arrival is graphically intro-
duced in Fig. 10: the duration d1, d2, . . . is the series
with the number of elements in each group of false neg-
atives, whereas the inter-arrival i1, i2, . . . is the distance
between each false negative and the next.
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FIG. 10. Duration (d1, d2, d3) and inter-arrival (i1, i2, i3) of

false detections.

IV. RESULTS ON A 3-DAY DATA SET

We analyze three days of measurements to identify and
illustrate some mainstream results, that will be then fur-
ther verified in Section V on a longer data set. Measure-
ments were randomly selected among the available daily
time series to reflect characteristic irradiance patterns
because, as evidenced by the analysis, this was found to
impact on results. In particular, they refer to a nearly
clear-sky day (Day A, April 22), a partly cloudy day with
frequent GHI variations (Day B, May 12), and a second
nearly clear-sky day (Day C, July 2), with mild GHI vari-
ations in the afternoon. GHI series averaged over all the
locations are shown in Fig. 11, where the thick lines and
the envelopes show respectively averages and min/max
values of the estimations over space.

A. Medium voltage voltage network

a. Variability-underestimation factor Table III re-
ports the variability-underestimation factor for days A,
B and C in scenario 33. It can be observed that:

1. largest underestimations happen in nearly clear-sky
days A and C, denoting that satellite estimations
cannot spot highly variable irradiance components
caused by, e.g., small clouds, because of reduced
spatiotemporal resolution and parallax e↵ects;

2. underestimation levels of spatially averaged
POA irradiance are di↵erent than of GHI. This is
to be expected because irradiance transposition is
nonlinear;

3. underestimation levels of Total PV production
are di↵erent than of Spatially averaged POA due
to temperature and non-uniformly distributed PV
generation capacity that amplifies di↵erently local
irradiance patterns; to understand the role played
by these two factors, Total PV production (no
T) reports the underestimation factor when the
temperature e↵ect on PV generation is not mod-
eled. In this case, the PV production is directly
proportional to the local POA irradiance. It can
be seen that modeling temperature leads to reduc-
ing the underestimation factor;

4. power at the GCP reflects the same trends as for-
mer quantities, however with di↵erent values than
Total PV production because, i), the time-varying
demand profile impacts on the variability and, ii),
of path-dependant transmission losses. In Scenario
33, grid losses are approximately 5% of the total
power flow in average.

Scenario 43 denoted increased PV power production lev-
els. Results are not reported because they do not bring
new relevant insights on variability.

TABLE III. MV grid: variability-underestimation factors.

Metric Total PV production (no T) refers to PV production

modeled without considering temperature e↵ects.

Variability-underestimation Day A Day B Day C

factor of

Spatially averaged GHI 9.8 2.3 8.3

Spatially averaged POA 10.9 2.2 8.3

Total PV production 12.5 2.6 9.5

Power at the GCP 5.6 2.6 8.2

Total PV production (no T) 13.2 2.7 10.0

b. False-positive and false-negative detections Ta-
ble IV summarizes the number of over-currents and over-
voltages in the ground-truth load flows with pyranome-
ters estimations, and of false detections with satellite es-
timations. Scenario 33 features no over-voltage and, in
day B, a few over-currents, which are all undetected by
satellite estimations, as denoted by 100% over-current
false negatives; false detections in Day B are because
satellite estimations do not record the large irradiance
peaks that lead to over-currents. In Scenario 33, satellite
estimations do not score any false-positive detection.
Scenario 43 features higher PV installed capacity, and

few over-voltages and more over-currents than Scenario
33. Days B and C are still the most critical for false nega-
tives due to highly volatile irradiance patterns. Scenario
43 reports less over-current false negatives than Scenario
33 because the larger PV capacity determines higher av-
erage line currents; thus smaller irradiance peaks are
enough to trigger a valid detection of a grid constraint
violation.
Scenario 43 reports some false positives, denoting that

satellite estimations overestimates the PV production po-
tential in some instances. This is the case, e.g., in the
central part of Day A. as visible in Fig. 11, due to residual
positive bias.

TABLE IV. MV grid: occurrences (%) of over-voltages and

over-currents with pyranometers, and false positive (FPs) and

false negative (FNs) detections of satellite estimations.

PV penetration scenario Scenario 33 Scenario 43

Metric

Day
A B C A B C

Over-voltages (PYR) 0 0 0 0 0.32 0

Over-currents (PYR) 0 0.03 0 6 1.57 3.54

Over-voltage FNs (SAT) – – – – 100 –

Over-current FNs (SAT) – 100 – 16.6 72.4 58.4

Over-voltage FPs (SAT) 0 0 0 0 0 0

Over-current FPs (SAT) 0 0 0 0.4 0.2 1.7
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FIG. 11. Satellite (SAT) and pyranometer (PYR) estimations of GHI averaged over all locations for 3 days: A (22 Apr 2013),

B (12 May 2013), and C (2 Jul 2013). Values with solar zenith angle larger than 70
�
are omitted. Solid lines denote spatial

averages and color-filled areas denote the envelope between maximum and minimum values over space.

c. Irradiance and over-current patterns during false
negatives We perform this analysis based on Scenario
43 and partly-cloudy Day B because it reports the largest
number of over-current false negatives.

The upper-panel plot in Fig. 12 shows the CDFs of the
GHI estimation error (3) of satellite estimations during
correct, false negative and false positive detections. It
shows that the GHI error for false negatives and false
positives is respectively smaller and larger than for true
detections. This in-line with the previous insight, accord-
ing to which irradiance underestimations lead to false
negatives and overestimations to false positives.

The bottom-panel plot in Fig. 12 shows the CDFs of
the estimation errors of line currents for satellite estima-
tions (i.e., the di↵erence between line currents estimated
from satellite and pyranometers). Current errors are in
per unit of the ampacity limit of the respective cable, e.g.
0.5 pu corresponds to half of the cable rating. The plot
denotes that negative errors (current underestimations)
are conducive to false negatives, and positive errors to
false positives, as to be expected. It also denotes that
the error magnitude is generally larger for false nega-
tives than for false positives. Nearly 20% of false-negative
episodes have current errors larger than 0.6 pu.
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FIG. 12. MV grid: CDFs of GHI errors of satellite estimations

(upper panel) and of line current errors of satellite estimations

(lower panel) in Day B and scenario 43.

d. Duration and inter-arrival times of false negatives
Also this analysis is performed on Scenario 43 and partly-

cloudy Day B because it reports the largest number of
over-current false negatives.
Fig. 13 shows the histograms of the duration (in the

first row) and of the inter-arrival times (second row) of
over-current false negatives. We first discuss the dura-
tion by referring to the histograms of the first row. The
duration of events with persistent false negatives is gen-
erally less than 10 samples (i.e., 5 minutes), except for a
single event in nearly clear-sky day C, which is 20-sample
long. Duration patterns are similar in the 3 days; thus,
they do not seem to exhibit specific variations according
to the sky conditions.
The histograms in the second row of Fig. 13 show inter-

arrival times mostly smaller than 10 samples, denoting
that false positives tend to be in the proximity of each
other. Day C features longer inter-arrivals, up to 120
samples, denoting that false negatives occur in 2 groups
that are 1 hour apart.

B. Low voltage network

The results for the LV network were found similar to
the MV case, except for some di↵erences ascribed to the
reduced spatial scale. In this section, we briefly summa-
rize the findings and focus on details only in the case of
major di↵erences.
a. Variability-underestimation factor Table V re-

ports the variability-underestimation factor for days A,
B and C in Scenario 33. Compared to the MV case,
the LV grid scores larger variability-underestimation due
to its smaller extension and reduced spatial smoothing.
Largest underestimation factors happen in the nearly
clear-sky day. Average transmission losses (not reported
in the table) are approx. 8% of the total active power
flow at the GCP.

TABLE V. LV grid: variability-underestimation factors. Met-

ric Total PV production (no T) refers to PV production mod-

eled without considering temperature e↵ects.

Variability-underestimation Day A Day B Day C

factor of

Spatially averaged GHI 12.6 3.8 13.5

Spatially averaged POA 13.5 3.9 13.4

Total PV production 9.0 3.9 14.3

Power at the GCP 7.4 3.9 13.7

Total PV production (no T) 9.0 4.1 14.8
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FIG. 13. Duration (first row) and inter-arrival (second row) of false negative events for the MV grid case.

b. False positive and false negatives Table VI re-
ports the number of over-currents and over-voltages in
the load flows with pyranometers, and of false detections
with satellite estimations. Similarly to the MV case, days
B and C are the most critical for false-negative detec-
tions. False positives occur only in the scenario with the
largest PV installed capacity. The CDFs of the satellite
estimations error and line currents error confirm identical
findings as before and they are omitted.

c. Duration and inter-arrival times Statistics of du-
ration and inter-arrival of over-current false negatives
were found comparable with the previous case, denot-
ing that di↵erences in the geographical dimension at this
scale does not seem to play a role. Similar results are
also confirmed by the analysis of the longer data set in
the next section.

TABLE VI. LV grid: occurrences (%) of over-voltages and

over-currents with pyranometers, and false positive (FPs) and

false negative (FNs) detections of satellite estimations.

PV penetration scenario Scenario 33 Scenario 43

Metric

Day
A B C A B C

Over-voltages (PYR) 0 0 0 0 0.24 0.03

Over-currents (PYR) 0 0.01 0 1.59 1.44 1.05

Over-voltage FNs (SAT) – – – – 100 100

Over-current FNs (SAT) – 100 – 10.1 89.9 53.1

Over-voltage FPs (SAT) 0 0 0 0 0 0

Over-current FPs (SAT) 0 0 0 0 0 0.2

C. Impact of pyranometers’ inaccuracies on results

To assess if the accuracy of pyranometers’ measure-
ments could impact on results, we have repeated the sim-
ulations of the MV grid by altering all irradiance value
by ±5%(i.e., given by averaging the accuracy figures re-
ported in Section IIC). It was verified that results were
minimally impacted, and conclusions unchanged.

V. RESULTS ON 25 DAYS OF DATA

We consider 25 days of measurements and verify if con-
siderations developed in the former section apply. Data
are shown in Fig. 14, along with their classification ac-
cording to prevailing sky conditions (clear-sky, nearly
clear-sky, partly cloudy, cloudy), performed by visual in-
spection.
a. Variability Fig. 15 shows the variability-

underestimation factor of Total PV production against
the variability of spatially averaged GHI of pyra-
nometers (defined in Section III). They denote that, i),
variability is generally higher in partly cloudy and nearly
clear-sky days than in cloudy and clear-sky days, and ii),
largest to lowest underestimations are in nearly clear-sky,
partly cloudy, clear-sky and cloudy days. Results for the
MV and LV grids are similar, however the former features
smaller axis values than the latter due to its larger exten-
sion and spatial smoothing. In this regard, it is interest-
ing to observe that despite the MV grid uses information
from 11 pyranometers on a surface of 15 km2 (whereas
the LV grid uses 2, which are less than 400 meters far
apart, and extends for 0.035 km2), the variability of its
spatially averaged GHI is only 30% smaller than for
the LV grid, denoting an overall small spatial smoothing
e↵ect.
The variability-underestimation factor was defined in

(14) as the ratio of the variability recorded by pyranome-
ters; hence, it expresses the proportion among the two.
To complement that information, we define the variabil-
ity di↵erence

variability di↵erence(x) = (15)

variability(xpyr)� variability(xsat), (16)

which can be interpreted as the magnitude of the un-
captured variations. Fig.16 shows the variability di↵er-
ence of Total PV production against the variability of
spatially averaged GHI of pyranometers for the MV
network. They stand in a nearly linear relationship, de-
noting that, the higher the variability of the pyranome-
ters is, the more satellite estimations underestimates the



11

D 10h D 14h E 10h E 14h F 10h F 14h G 10h G 14h H 10h H 14h
0

500

1 000 nearly clear-sky cloudy nearly clear-sky cloudy clear-sky
G
H
I
(W

/m
2
)

Pyranometers max/min Satellite max/min Satellite spatial average Pyranometers spatial average

I 10h I 14h J 10h J 14h K 10h K 14h L 10h L 14h M 10h M 14h
0

500

1 000 partly cloudy partly cloudy clear-sky nearly clear-sky nearly clear-sky

G
H
I
(W

/m
2
)

N 10h N 14h O 10h O 14h P 10h P 14h Q 10h Q 14h R 10h R 14h
0

500

1 000 partly cloudy partly cloudy cloudy cloudy nearly clear-sky

G
H
I
(W

/m
2
)

S 10h S 14h T 10h T 14h U 10h U 14h V 10h V 14h W 10h W 14h
0

500

1 000 cloudy cloudy partly cloudy partly cloudy nearly clear-sky

G
H
I
(W

/m
2
)

X 10h X 14h Y 10h Y 14h Z 10h Z 14h � 10h � 14h � 10h � 14h
0

500

1 000 cloudy partly cloudy nearly clear-sky nearly clear-sky partly cloudy

Time (day label and hour, UTC)

G
H
I
(W

/m
2
)

FIG. 14. Fifteen non-consecutive daily scenarios of GHI: D, E, F, G, H (20, 23, 24, 25, and 26 April 2013), I, J, K, L, M, N,
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over space.
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FIG. 15. Variability underestimation factor of total PV generation of satellite estimations vs variability of Spatially

averaged GHI of pyranometers for the MV (left) and LV grid (right). Alphabetic labels refer to the 25 days of data.

variability of the aggregated PV production. The results
for the LV network are similar and are omitted.

b. False detections Fig. 17 compares the shares of
false positives versus false negatives for over-currents in
the MV and LV grids. In the MV grid (left panel), false

negatives are predominant in partly cloudy days (when
irradiance variations are generally large), whereas false
positives are predominant in clear-sky and nearly clearly-
sky days due to the residual positive bias of satellite es-
timations. Cloudy Day U also scores 100% false nega-
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FIG. 16. Variability di↵erence of total PV generation of

satellite estimations vs variability of Spatially averaged

GHI of pyranometers for the MV (left) and LV grid (right).

Alphabetic labels refer to the 25 days of data.

tives due to large spatial variations of irradiance mea-
surements, as the orange envelope in Fig. 14 shows, that
are not captured by satellite estimations. Other cloudy
days are not shown in the plots because either score zero
false positive and negative, or their irradiance patterns
do not determine grid violations. Similar considerations
apply to the LV grid (right panel), with the di↵erences
that the proportion of FPs is lower and more cloudy days
scores false negatives, denoting higher susceptibility to
local irradiance conditions.

c. Duration and inter-arrival times The analysis on
the duration and inter-arrival on the 25-day data set did
not show specific patterns with respect to sky-conditions
and are not reported here. Also, di↵erences between the
MV and LV grids did not emerge in the comparison.

d. Congested lines The plot in the upper left panel
of Fig. 18 shows the occurrences of over-currents in the
MV grid according to sky conditions. Over-currents
mostly happen in nearly clear sky days (where irradi-
ance feature very large values due to cloud enhancement)
followed by clear-sky days and partly cloudy days. Con-
gested lines are the number 3 and 15-17, which, from
Fig. 4, are the closest to the GCP and the most critical
because they are subject to the aggregated power flows.
The plot in the bottom left panel of Fig. 18 shows the
occurrences of over-currents false negatives according to
sky conditions. They occur mostly in nearly clear-sky
and partly cloudy days, and less in clear-sky days, when
satellite estimations are able to detect irradiance dynam-
ics better.

The plots in the right panels of Fig. 18 show the same
results for the LV network. Congested lines are 1-3 and
11-16, which are those close the GCP and in the lateral
feeders that interface a large amount of generation, re-
spectively. Distribution of both over-currents and false
negatives show the same features as discussed for the MV
case.

VI. CONCLUSIONS AND PERSPECTIVES

a. Summary of the work We investigated the perfor-
mance of HelioClim-3 v.5 satellite estimates of GHI com-
pared to ground-based measurements from pyranometers
(HOPE campaign) in applications to modeling the vari-
ability of distributed PV generation and detection of grid
constraints violations (nodal voltages and line currents).
The analysis was performed with load flow simulations
considering the grid and demand specifications of the CI-
GRE benchmarks for LV and MV systems. Distributed
PV systems were sited and sized with a procedure from
the literature to saturate the hosting capacity of the
grids. PV generation at each node was modeled as a
function of installed capacity and GHI with a transpo-
sition model. Satellite estimations were de-biased on a
daily basis to retain the focus the analyses on variability
only. Pyranometers measurements were post-processed
to remove outliers and potential other bad data close
to missing measurements. Analysis were conducted at a
30 sec resolution.
b. Key results The analyses were carried out for 28

daily profiles of the irradiance with several typical sky
conditions: clear-sky, nearly clear-sky, partly cloudy, and
cloudy. It was found that:

• at the edge of the grids’ PV hosting capacity, satel-
lite estimations could not detect mild over-current
episodes in both LV and MV grids, leading to false
negative estimations;

• false negatives were more likely in partly cloudy
(when local cloud enhancement phenomena a↵ect
PV production patterns) and cloudy days. False
positives were more likely in nearly and clear-sky
days due to a residual local positive bias of satellite
estimations;

• false negative detections were persistent for long
time intervals (e.g., tens of minutes) due to the
residual negative bias of satellite estimations, as
well as sporadic (e.g., single false negatives with
inter-arrival times of minutes) due to fast fluctua-
tions of the irradiance that were not captured by
satellite estimations;

• satellite estimations underestimated the variability
of the total PV production and the power flow at
the GCP in both LV and MV grids. Underestima-
tions were less severe in the MV grid case due to
the larger geographical scale. Non-uniformly in-
stalled PV generation capacity and temperature
were found a↵ecting variability patterns, suggest-
ing that these phenomena should be taken into con-
siderations when, for instance, plan reserve require-
ments.

c. Implications and perspectives There is no disput-
ing on the practical value of satellite estimations. How-
ever, results suggest that, when using irradiance estima-
tions with similar attributes as those considered (e.g.,
spatiotemporal resolution and parallax), proper counter
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FIG. 17. False-negative versus false-positive detections of over-currents of satellite estimations for the MV (left) and LV grid

(right). Alphabetic labels refer to the 25 days of data.
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FIG. 18. Top panel: congested LV lines according to sky conditions in the MV (left) and LV grid (right). Bottom panel: LV

lines with false negative detections according to sky conditions in the MV (left) and LV grid (right).

measurements or data reconciliation strategies with lo-
cal estimates should be adopted to limit the shortcom-
ings described above. These considerations also extend
to forecasts, that are typically elaborated starting from
satellite images and are delivered on relatively coarse ge-
ographical mesh grids.

Implications are case specific. For TSOs and balance
responsible parties, coarse irradiance estimates in con-
fluence with high levels of installed PV generation ca-
pacity can lead to underestimating the variability of PV
generation, thus underestimating reserve requirements,
which should be therefore scheduled adopting conserva-
tive margins (this can also apply to DSOs if grid codes
require them to compensate deviations from pre-defined
dispatch plans). DSOs, when planning the connection
of new PV facilities, should also implement conservative
margins from grid constraints or adopt realistic models of
spatiotemporal variations, especially when near the PV
hosting capacity of the grid, to avoid false negative detec-
tions. In the context of real-time and predictive control of
grids for congestion management, dispatch, voltage con-
trol, and peak shaving, results suggest that spatiotempo-
ral coarse estimations could be complemented with real-
time local information at a higher resolution to perform

better decisions.
Current results were elaborated from load flow simula-

tions. The uncertainty related to pyranometers measure-
ments and two di↵erent anisotropic transposition models
(Hay-Davies and Perez) were found to impact on numer-
ical results marginally without altering conclusions. If
field data from an experimental setup with many grid-
connected distributed PV plants will become available, a
comparison with the proposed results would be of defi-
nite interest to confirm findings as they would inherently
include all modeling uncertainties (i.e., direct/di↵use sep-
aration, transposition, panels’ spectral response and ef-
ficiency, and distribution grid’s parameters). Also, the
e↵ects of uncorrected bias should be further investigated;
even if this is not expected to play a significant role on
variability, it could certainly have a dominant impact on
false positive and false negative detections of grid con-
straints violations.
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