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Global horizontal irradiance (GHI) is typically used to model the potential of distributed

photovoltaic (PV) generation.

On the one hand, satellite estimations are non-pervasive

and already available from commercial providers, but they have a limited spatiotemporal
resolution. On the other hand, local estimations, e.g., from pyranometers, sky-cameras and
monitored PV plants, capture local irradiance patterns and dynamics, but they require in-
situ monitoring infrastructure and upgrading the asset of electrical operators. Considering
that in most power systems, PV generation is typically the aggregated contribution of many
distributed plants, are local GHI estimations necessary to characterize the variability of the
power Row at the grid connection point (GCP) and detect violations of the limits of voltages
and line currents accurately? To reply, we consider GHI measurements from a dense network
of pyranometers (used to model the ground truth GHI potential), satellite estimations for the
same area, and information about a medium and low voltage distribution system. We perform
load RBows at dilerent levels of installed PV capacity and compare the nodal voltages, line
currents, and the power at the GCP when the irradiance is from pyranometers and when from
satellite estimations, deriving conclusions on the necessity, or not, of highly spatiotemporally

resolved irradiance estimations.

I. INTRODUCTION

Current operational practices of electrical distribution
utilities related to PV generation typically involve the use
of solar irradiance estimations to evaluate its production
potential. The kind of estimations usually depends on
the level of aggregation. Distribution system operators
(DSOs) typically use model-based estimates of PV gen-
eration for feasibility studies when connecting new PV
power plants to verify that the grid can withstand the
power injections without determining violations of statu-
tory voltage limits and cablesO ampacities (see ety. Ir-
radiance forecasts might be relevant for DSOs to schedule
the operation of utility-scale storage facilities to mitigate
the impact of PV generation on their grids, or if specipc
grid codes (see, e.g., the notion of balance group in the
Swiss grid codé) to improve the forecast of their aggre-
gated demand when they are penalized for incurring in
unbalances.

At the level of the transmission system operators
(TSOs) and load balance responsible, the need for fore-
casts of stochastic generation and demand stems from the
requirements of dispatching conventional power plants
and allocating power reserves in day-ahead and intra-day
markets, typically at 1-hour or sub-hour resolution; due
to the low time resolution of the dispatch processes, ir-
radiance estimations from numerical weather predictions
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DESL, EPFL.

(NWPs) fed by satellite information may be used (e.qg.2).

However, future increased generation capacity levels
from renewables and reduced values of system inertia will
determine more signibcant reserve requirements and the
compression of the time scale at which ancillary services
need to be delivered. Future grid codes will promote the
development of markets for enhanced regulation and con-
gestion management (e.d:°), fostering the participation
of distributed energy resources, including renewable gen-
eration, in the provision of grid ancillary services. Since
PV generation is the fastest-growing among stochastic
renewables in distribution grids, it is relevant to won-
der whether satellite estimations will be able to capture
PV production patterns accurately or if local estimations
should complement them.

To reply to this question, we consider a low voltage
(LV) and a medium voltage (MV) distribution feeder,
and GHI estimations from both a dense network of pyra-
nometers and satellites overlaid on a common geograph-
ical meshgrid. With load Row simulations, we determine
nodal voltages, line currents, and power Bows in the grids,
prst, when GHI is from pyranometers measurements (i.e.,
ground-truth case) and, second, with satellite estimations
and compare the results. The comparison is performed
from two standpoints: an analysis on the nodal volt-
ages and lines currents to verify whether they respect
the prescribed limits (i.e., a critical operational concern
for distribution system operators), and evaluation of the
volatility levels of the power Bow at the gridsO connection
points (i.e., relevant in the context of scheduling power
reserves).

The use of local and satellite estimations of GHI was



considered in the existing literature in application to
power system studies, however little elort was devoted to
comparing their performance and to understand whether
higher or lower spatiotemporal resolution plays a role.
For instance, Ruf et al.® compare the total power produc-
tion of a cluster of PV plants spread on a 0.6 0.7 km area
against HelioClim-3 v.5 (HC3v5 ) estimates and ground
observations from a single weather station at 11 km dis-
tance; they conclude that satellite estimations lead to
a better performance than distant local observations.
Leloux et al.” used satellite GHI estimates to charac-
terize the performance of PV plants, with no focus how-
ever on grid voltage and current constraints and without
considering local irradiance measurements. Conversely,
Nguyen et al® discusses applying local GHI measure-
ments to determine the PV hosting capacity of MV grids
and the position of on-load tap changer transformers for
voltage regulation, with no performance comparison with
satellite estimations. Rikos et al® investigates the use
of satellite estimations to characterize the variability of
PV generation and anticipate shortcoming of generation,
concluding that preemptive control based on early warn-
ings from satellites are possible if below critical levels of
installed PV capacity and ramping rates of PV genera-
tion, with no performance comparison against local GHI
estimations. Lave et all® propose a model to character-
ize the geographical smoothing of distributed irradiance
time series based on measurements from 6 pyranometers
within 3 km distance. They observed that the variance
of the spatially averaged series is six times smaller than
single series for time scales up to 256 sec; above that, the
spatial smoothing elect decreases due to series becoming
more correlated.

The main contribution of this paper is a quantitative
comparison of the performance of satellite versus local es-
timations of GHI for detecting grid-constraint violations
and estimating the variability at the GCP. As specibc
numerical Pndings depend on the topology and physical
characteristics of the lines, it is generally not possible to
derive analytic principles to determine apriori whether
the use of readily available satellite estimations is reli-
able. However, the proposed results provide useful indi-
cations to determine whether local estimations should be
considered.

The remainder of this paper is organized as follows.
Section Il describes the modelling principles and GHI
data sources, Section Il details the metric adopted for
the comparison, sections IV and V presents and discusses
the results, and Section VI outlines the conclusions.

Il. SIMULATION MODELS AND DATA

A. A common geographical reference for measurements
and networks

To the best of our knowledge, an experimental setup
with geolocated information on both the electrical grid
infrastructure and local irradiance is not publicly avail-
able at the time of this study. Thus, we collect informa-
tion from dilerent sources and overlay them on a com-

mon geographical mesh grid, as shown in Fig. 1. This
allows to establish the link between GHI and grid topolo-
gies (as explained in Section Il E), and to calculate the
PV generation at each node. There are 3 layers of infor-
mation: electrical networks, GHI pyranometer measure-
ments, and GHI satellite estimations. The geographical
area of interest extends for approximately 48 km. A
mesh grid with 0.040 km resolution (this approximates
the smallest distance in the model, i.e. the 0.035 km
long segments of the LV grid) is overlaid on the area and
used to compute a uniform map of approximated GHI
with nearest-neighbor (NN) interpolation. The time res-
olution of the time series is 30 s, chosen as a trade-o!
between capturing fast GHI RBuctuations, and tractable
computational times.

The specibcations of the benchmark electrical systems
(described in Section 11B) do not report the position of
the nodes but only the lines length; these are used to
establish the relative positions of the nodes with respect
to each other; once they are determined, the location of
the grids as a whole is chosen so that each falls in the
perimeter delimited by the outermost pyranometers so
to guarantee reliable GHI interpolations.

Pyranometers
(© Medium voltage network

0 Low voltage network

0 Km 4

FIG. 1. Location of pyranometers and electrical networks.
The zoomed region shows the LV grid. Information are from
different sources and overlaid on a common geographical mesh
grid.

B. Electrical networks

a. LV and MV systems To refRect the two main-
stream trends for the connection to the grid of PV plants
(i.e., utility-scale and rooftop installations), we consider
a medium voltage (MV) and a low voltage (LV) distribu-
tion system, modeled according to the CIGRE specibca-



T T T T T T T
250 @ ® O Pyranometers | O Pyranometers
0] O Excluded pyranometers 84~ ©® LV nodes

S MV nodes <
5 5
2 200 1 2
g ® g 82| a
£ € L]
g 150 18 e

) = © 80| 4] B
3 @ 0 3
2 ® ., O o i
>, 100[ ) © 1= -
) ¥ > =)
g € ® (i‘ g 78} ] B
2 ® ® @
O N € i )
s 50 ) 5 =

® 761 19 a
O | | | iR) _ | (D) | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200 72 74 76 78

Meshgrid x index (40 m resolution)

Meshgrid x index (40 m resolution)

FIG. 2. Locations and labels of the pyranometers, MV nodes (in the left plot), and LV nodes (right). Excluded pyranometers
refer to units that occasionally underestimated irradiance and were disregarded, as explained in the text. The distance between
nodes {2, 3}, {7, 8}, and {4, 5} is less than the meshgrid resolution and share the same location on the meshgrid.

tions for the European grid benchmarks for three-phase
MV and LV distribution systems ! (bgures 4 and 5). The
MV grid is a 14-node 20 kV/25 MVA meshed system; the
LV grid is an 18-node 0.4 kV/400 kVA radial system. The
power Bow at the GCP, nodal voltages and line currents
of each grid are computed with single-phase load Rows
as a function of the grid admittance matrix and nodal
injections. We thereby assume balanced three-phase sys-
tems: the inclusion of unbalances in the system is not
of particular interest as most of the PV installations are
interfaced to the grid with three-phase power converters.
The nodal injection at each node is the algebraic sum of
the electrical demand and PV generation, determined as
discussed in the next two paragraphs.

We assume that excess PV generation Rows in the
upper-level grid. PV self-consumption schemes are not
considered because not relevant in the context of com-
paring local versus satellite estimations.

b. Demand probles In-line with the CIGRE
specibcation$?, the active power demand at the nodes
is modeled by scaling the time series shown in Fig. 3
for the nominal demand of each node (reported in
tables | and I) and according to the type of load (i.e.,
domestic or commercial). The same re-scaled series
is applied to the demand at all nodes by considering
perfect correlation among them. This choice is because
our focus is comparing the elects of using satellite
estimations against using local irradiance, and modeling
spatial correlation would introduce a new element of
variability in the analysis. Reactive power injections
are modeled using a constant power factor, reported in
Table I.

c. PV generation CIGRE specibcations?! include a
moderate quantity of connected PV generation capacity.
To reproduce a future scenario with large installed capac-
ity levels of PV generation, we apply a procedure simi-
lar to work!? to determine the maximum PV installed
power than the grid can host without violating grid con-
straints (i.e., so-called PV hosting capacity of the grid).
We consider bxed (non-tracking) PV plants. Nominal
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FIG. 3. Active power profiles of the demand in per unit (pu)
of the nominal value of the demand.

capacity, and tilt and azimuth per node are specibed in
tables | and 11 . PlantsO tilt and azimuth are, for the MV

grid, the same for all the plants and optimized to achieve
the highest yearly capacity factor, as typical for large-
scale installations. For the LV grid, they are randomly

distributed around the optimal conbguration to account

that in LV feeders PV generation is typically from non-

uniform rooftop installations. The output of each PV

power plant is determined as a function of its installed
capacity, tilt and azimuth, and local GHI as detailed in

Section IID. PV plants are assumed operated at unitary
power factor.

In addition to the case where the grid is at the limit
of its PV hosting capacity (that we denote as Scenario
33), we consider a more extreme second case where the
PV installed capacity at each node is scaled by factor 4/3
to analyze the sensitivity of the results with respect to
the amount of PV generation (Scenario 43).

C. Data sources for the global horizontal irradiance

We describe here the irradiance estimations and mea-
surements processing. We introduce the following nota-
tion: t=1,2,...,T denotes the index of theT" time inter-



TABLE I. MV grid: nominal loads, power factor (pf), PV
installed capacity at STC, and ID and distance of the nearest
pyranometer per node.

Node Demand PV Generation Nearest
Residential | Commercial Power pyranometer
MW pf | MW of MWp ID | dst (m)
1 153 | 0.98 | 5.1 | 0.95 571 10 700
2 0 b 0 5.02 49 769
3 0.28 |0.97 | 0.26 | 0.85 4.39 77 256
4 0.44 | 0.97 0 b 2.23 86 126
5 0.75 | 0.97 0 b 1.28 26 165
6 0.56 | 0.97 0 b 0.09 86 268
7 0 b | 009 | 0.85 0 78 544
8 0.6 |0.97 0 b 0 78 641
9 0 b | 067 | 0.85 1.13 89 400
10 0.49 |0.97 | 0.08 | 0.85 1.62 91 200
11 0.34 |0.97 0 b 5.71 91 89
12 15.3 | 0.98 | 5.28 | 0.95 5.71 55 408
13 0 b | 0.04 | 0.85 0 59 322
14 0.22 |0.97 | 0.39 | 0.85 5.02 18 544
Total |34.28 1191 37.91

TABLE II. LV grid: nominal load, power factor (pf), installed
capacity at STC and configuration (i.e., azimuth and tilt) of
PV generation, and ID and distance of the nearest pyranome-
ter per node.
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FIG. 4. The CIGRE benchmark grids for MV systems™!;
breaker S1 is operated closed.

vals,d=0,1,... the index of the day, andp=1,...,99
the index of the pyranometers location; the time index
t is split into daily sequencesDy for d = 0,1,... that
groups the indexes of all time intervals of dayd. Pyra-
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FIG. 5. The CIGRE benchmark grids for LV systems™?.

nometer and satellite estimations for time¢ and location
p are respectively denoted byzy, and @y .

1. Pyranometers measurements and processing

a. Data selection Pyranometers data are from the
HOPE measurements campaigh® and refer to the period
from 2 April to 24 July 2013. The setup included 99 open-
Peld installations with silicon photodiode pyranometers
distributed over an area of approximately 48 kn?. Mea-
surements were labeled with quality Bags according to
the cleanliness of the sensor and horizontal alignment.
We consider measurements marked agood and low in-
cident angles with solar zenith angle smaller than 70 to
avoid inaccurate readings. To blter out potential other
bad data, we remove GHI values within a+ 30 s range
from a missing or non-valid data point. Additionally,
we verify the presence of pyranometers with outlier mea-
surements with respect to others and exclude them as
explained next. Let xE,d) be the reading of pyranometer
p averaged over dayd, formally:

1
(d) — §
Ip' = | Dyl Ttp 1)
teD g4

where |Dy| denotes the number of elements inDy, and
@y the average over space:

B= =S a0, 2)



Daily average serieszr,gd), d=1,2, ... are normalized by
applying fé,d) = xf;d)/:ﬁd, that essentially tell us how a
measurements of a pyranometer compare with respect to
average. The cumulative distribution function (CDF) of

ﬂf)d),"p d is shown in Fig. 6. It was observed that pyra-
nometers number 38, 43, 58, 60, 71, 72 (shown in Fig. 2)
occasionally underestimated the irradiance with respect
to others; setting up an empirical symmetrical acceptance
range 0.75-1.25 (shown with the dashed lines in Fig. 6 and
that contains 99.5% of the measurements) was enough to
exclude them. Variations around 1 in Fig. 6 can be ex-
plained by local weather patterns and non-uniform cloud
passing over the area. To avoid periods with spatially
sparse measurements, we consider time intervals where
at least 70% of pyranometers are available.
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FIG. 6. CDF of normalized daily irradiance recorded by the
pyranometers after filtering outliers.

b. Data processing GHI, originally at 1 Hz, is down-
sampled to 30 s by decimation (samples average would
smooth quick variations) to reduce the number of load
Rows to perform, and NN interpolation is applied to com-
pute one data-point per pixel of the mesh grid. It is worth
noting that, on the one hand, temporal down-sampling
reduces temporal variations, thus biasing the analysis in
favor of satellite estimations. On the other-hand, spatial
NN interpolation exacerbates spatial correlation, thus bi-
asing the results in favor of pyranometer estimations.

c. Accuracy of measurements Madhavan et al.l®
characterize the accuracy of pyranometers readings and
report uncertainty levels of +4.4 and 35.5 WnT?2 at 50
and 1000 Wn12, respectively, and zenith angle smaller
than 70°, i.e., £8% and 3.5%. We anticipate that, as
it will be shown in Section IVC, the impact of mea-
surements uncertainties on the performance assessment
is negligible.

2. Satellite estimations

a. Data selection and processing We use commercial
HC3v5 GHI estimations from Soda Service. They are
obtained by estimating the clear-sky index using 15-min
resolution satellite images from second generation Me-
teosat, applied to McClearOs clear-sky model including
information on water vapor, aerosols, and ozone levels.
The commercial provider achieves a higher time resolu-
tion with an interpolation procedure '* that considers the
position of the sun in the sky, but not cloud movements.
We query data at a 1-min resolution for each pyranome-
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ter location. We achieve the target 30-sec resolution with
linear interpolation.

b. De-biasing Vernay et al.'® correct the bias with
a non-linear regression model pbtted on a year of ground-
based GHI measurements. This procedure is not appli-
cable here because pyranometer data are for 4 months.
Alternatively, we correct the bias by subtracting, for each
pyranometer location, the dilerence between the satellite
estimation for that location and the ground-based mea-
surements, averaged on a daily basis, as explain next.
The error of satellite estimation is:

3)

The daily bias is the average of the error over one day:

Etp = éitp # Ttp

1
(0= (4)
€ €Etp -
S a2
Satellite estimations are de-biased by applying:
Ty = T # ey (5)

where y(t) denotes the indexd of the day to which time
interval ¢t belong (y(t) = d |t $ Dq). Fig. 7 shows the
empirical probability distribution function of the error
of debiased satellite estimations: variations around zero
relect inaccuracies due to, e.g., reduced spatiotempo-
ral resolution and parallax, as for instance reported in
work!8. Fig. 8 shows the standard deviation of the error
as a function of the pyranometer location: the variabil-
ity is within the range 125-145 Wm~2. It indicates that
the variations of the satellite estimation error is nearly
uniform over space. This can be explained by the move-
ments of clouds that determine similar shading patterns
on the area over time and comparable levels of variability
across locations.

The de-biasing process (3)-(5) might be inaccurate for
late morning and evening hours, when irradiance values
are lower than for the rest of the day. However, irradi-
ance values with zenith angle larger than 70 degrees are
removed. Moreover, in the context of the proposed anal-
yses on variability and violations of grid constraints, low
irradiance values are not expected to play a relevant role.

It is also worth noting that the process (3)-(5) is not
viable in real-time applications because it isnon-causal
(it entails calculating the bias before knowing the real-
izations) and requires a dense network of measurements,
that is generally unavailable. However, as the compari-
son focuses on quantifying the elect of spatial resolution
and not of bias, we consider ideally de-biased satellite
estimations.

c. Quality of satellite estimations Qu et al.” com-
pare HC3v5 estimations against ground-based measure-
ments from 23 sites and report relative bias and rRMSE
in the ranges -4/4% and 14/38%. The same metrics (de-
Pned in work!”) calculated for the current case study
score in the ranges -7/3% and 28/41% at 15 min resolu-
tion, in-line with results reported in the literature.
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D. Computation of the nodal PV injections

We model PV generation with the empirical mode 8920
that accounts for the temperature elect by scaling the
value of the POA irradiance. Let b denote the index of
the electrical nodes,t¢ the time interval, It(\b) in Wm —2
the POA irradiance. The PV generation and the cell
temperature of the PV plant at node b and time t are
modeled by (assuming constant unitary e'"ciency with
respect to the irradiance??):

JO\b)
1000
)

air ,t

pb)

PV = 1+ (19, # 25°) | P,

cell t

(6)

%) (7)

cell t + ﬂl t(\b)’
where P&, is the nominal capacity at the standard
test condition (STC), Ty is the air temperature from
measurements, and3 = 0.038 and v = #0.0043
are plant-specibc parameters which were obtained by
averaging the values for the close roof mount and
open rack conbgurationd® and values for polycrystalline
modules3, respectively.

The POA irradiance It(\b) is computed by applying
a transposition model as a function of the GHI, plant
tilt/azimuth and time of the day as described in IIEQb.

In turn, the GHI at the location b of the plant is com-
puted as described next.

E. Computation of plane-of-array irradiance

This step allows us to establish the link between plant
position and georeferenced measurements of the GHI and
to determine the POA irradiance of each PV plant. For
each plant, we determine brst the geographical coordi-
nates in the mesh grid that encompass its full extension

6

as a function of the PV capacity. These coordinates are
used to query GHI with the nearest neighbor interpola-
tion scheme. Finally, GHI is transposed to get the POA
irradiance. This whole process is detailed in the follow-
ing.

a. Computation of GHI We brst retrieve the coor-
dinates of the pixels encompassing the full extension of
the PV plant as a function of its nominal power capac-
ity. For convenience, we assume square PV plants and
centred on the pixel of the electrical node to which they
are connected. The pixels which include the plantsO ex-
tension are identibed starting from the plant location by
performing consecutive iteration of morphological dilata-
tion until the pixels span an equal or larger area than
the plant footprint area (see Fig. 9). Assuming horizon-
tal panels, the footprint area A, (m?) of a plant with

capacity PO s approximated by:

Ab= Bioh /d, (8)
whered = 0.15 is the PV conversion e"ciency. The plant
area in number of pixels approximated to the nearest

larger integer is:

np = ceil (Ap/r?),

(9)

where r is the resolution of the meshgrid in meters. Let
(i, jp) be the coordinates of busb, & a non-negative in-

teger denoting the algorithm iteration, Slﬁb) the set of
coordinates atk, % the Minkowski sum, 13,3 the all-one

3! 3 matrix , and |Sl5b)| the cardinality, or number of ele-

ments, of Slﬁb). The set of pixel coordinates that contains
the PV plant at node b (i.e., gray pixels in Fig. 9) is found

by:

S = {(ib, o)} (10)
Repeat for k=1,2,...

S = S %153 (11)
Until

157 & np. (12)

Once the set is found, it is used to query the GHI values
at each coordinate following the nearest neighbor inter-
polation scheme. GHI values are bnally averaged to get
equivalent value for the whole plant. Partial shading ef-
fect will be considered in future works where more dense
measurements will be available.

b. Computation of POA irradiance For transposing
irradiance starting from the GHI, we adopt the modeling
tool-chain implemented in PVIib?* to allow reproducibil-
ity of the results. For the computation of the direct
normal irradiance from GHI, we use the DISC modet®.
For transposition as a function of the panels tilt and az-
imuth of each plant, we use the anisotropic Hay-Davies
modeP®, which is known to have better performance than
isotropic modelg’’. Results were also tested for the Perez
modeP?®; the change of the transposition model (that is
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FIG. 9. A geographical mesh-grid with the PV plant location
(green pixel), plant boundary (green line) and set of pixels
encompassing the plant extension (gray and light gray pix-
els), obtained, in this case, with 2 iterations of morphological
dilation.

known to be a critical component, see e.g. wor¥) was
however found to impact results marginally, with slight
changes on false negative detections and unaltered levels
of variability-underestimation factors.

1. METRICS FOR THE COMPARISON

The objective of the comparative analysis is to evaluate
whether the use of satellite estimations leads to under-
estimate reserve capacity requirements and if they can
detect violations of grid constraints reliably.

For the former objective, we rely on the notion of vari-
ability of the power export, and we verify whether satel-
lite estimations can record, or not, the same levels of
variability as pyranometers. For the latter, we verify
whether satellite estimations can correctly detect viola-
tions of grid constraints, and we analyze durations and
inter-arrival times of false detections. The metrics are
described in the following.

a. Variability-underestimation factor of satellite esti-
mations Let x be a time series (for instance, irradiance)
with elements z1,x,,... and # its moving average on a
15-minute interval. We debne the variability of = as the
square root of the variance (Var) of the dilerence of the
two series

variability( ) = v/Var(xz # 9),

where # is element-wise dilerence among vectors. In
words, we say that (13) measures the intensity of the
variations of x around a trend. Let xp, and sy re-
fer to estimates from pyranometers and satellite, respec-
tively. The variability-underestimation factor is the ratio
between them:

(13)

variability-underestimation factor( x) =
_ variability( xpyr )
~ variability( @sat)

(14)

To further exemplify, we could assume that the vari-
ability is the metric that a TSO/load balance respon-
sible uses to allocate power reserves. For instance, the
higher the variability is, the larger the reserves should
be. Assuming that the TSO uses satellite-derived infor-
mation to allocate reserves capacity, the variability un-
derestimation factor (14) can be interpreted as a scale
coe"cient that denotes the OinadequacyO of the allo-
cated reserves with respect to real requirements. The
variability-underestimation factor is calculated for the
active power Row at the grid substation transformer (de-
noted by Power at the GCP), i.e., the quantity that a
TSO would use to allocate reserve capacity. In addition,
for the sake of following analysis, it is computed for the
following time series:

¥ Spatially averaged GHI: GHI at the PV plantsO
locations averaged over all locations. It allows to
compare the quality of satellite estimations com-
pared to those of pyranometers;

¥ Spatially averaged POA: POA irradiance on PV
plantsO panels averaged over all locations. It allows
to verify how the transposition model alects vari-
ability;

¥ Total PV production: the sum over all the plants
of the PV power output. It allows to verify how lo-
cal irradiance patterns are transformed in PV gen-
eration accounting for the modeled spatial distri-
bution of PV panels;

b. False positive and negative detections of grid con-
straints violations A voltage violation occurs when the
voltage magnitude at any node of the network is out-
side the range 0.9-1.1 pu. As we consider single-phase
equivalent load Bows and PV generation (i.e., voltage
magnitudes monotonically increase with active power in-
jections), violations occur in the form of trespassing the
upper-bound 1.1 pu; we refer to this as over-voltage. A
violation of a cableOs ampacity limit occurs when its cur-
rent magnitude exceeds 1 pu; we refer to this as over-
current. For assessing the quality of satellite estimations
in detecting over-currents and over-voltages, we intro-
duce the notion of false negative and false positive. A
false negative is when satellite estimations do not lead to
a constraint violation and the pyranometers estimations
do. A false positive is when satellite estimations lead to a
constraint violation and the pyranometers estimations do
not. False negatives are normalized by dividing for the
total number of true positives, and false positives for true
negatives. From a grid operatorOs perspective, false neg-
atives are more of a concern than false positives because
over-currents eventually lead to destroying cables.

c. Duration and inter-arrivals of false negative events
It is of interest to characterize the duration of groups
of false negatives and thanter-arrival between them to
understand whether false detections tend to be sporadic
or instead persistent over specibc time intervals. The
notion of duration and inter-arrival is graphically intro-
duced in Fig. 10: the duration d;,dy,... is the series
with the number of elements in each group of false neg-
atives, whereas the inter-arrival i1, i», ... is the distance
between each false negative and the next.
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IV. RESULTS ON A 3-DAY DATA SET

We analyze three days of measurements to identify and
illustrate some mainstream results, that will be then fur-
ther veribed in Section V on a longer data set. Measure-
ments were randomly selected among the available daily
time series to refl3ect characteristic irradiance patterns
because, as evidenced by the analysis, this was found to
impact on results. In particular, they refer to a nearly
clear-sky day (Day A, April 22), a partly cloudy day with
frequent GHI variations (Day B, May 12), and a second
nearly clear-sky day (Day C, July 2), with mild GHI vari-
ations in the afternoon. GHI series averaged over all the
locations are shown in Fig. 11, where the thick lines and
the envelopes show respectively averages and min/max
values of the estimations over space.

A. Medium voltage voltage network

a. \Variability-underestimation factor Table Il re-
ports the variability-underestimation factor for days A,
B and C in scenario 33. It can be observed that:

1. largest underestimations happen in nearly clear-sky
days A and C, denoting that satellite estimations
cannot spot highly variable irradiance components
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4. power at the GCP refRects the same trends as for-
mer quantities, however with dilerent values than
Total PV production because, i), the time-varying
demand proble impacts on the variability and, ii ),
of path-dependant transmission losses. In Scenario
33, grid losses are approximately 5% of the total
power 3ow in average.

Scenario 43 denoted increased PV power production lev-
els. Results are not reported because they do not bring
new relevant insights on variability.

TABLE III. MV grid: variability-underestimation factors.
Metric Total PV production (no T ) refers to PV production
modeled without considering temperature effects.

Variability-underestimation Day A Day B Day C
factor of

Spatially averaged GHI 9.8 2.3 8.3

Spatially averaged POA 10.9 2.2 8.3

Total PV production 125 2.6 9.5

Power at the GCP 5.6 2.6 8.2

Total PV production ( no T ) 13.2 2.7 10.0

b. False-positive and false-negative detectionsTa-
ble IV summarizes the number of over-currents and over-
voltages in the ground-truth load Rows with pyranome-
ters estimations, and of false detections with satellite es-
timations. Scenario 33 features no over-voltage and, in
day B, a few over-currents, which are all undetected by
satellite estimations, as denoted by 100% over-current
false negatives; false detections in Day B are because
satellite estimations do not record the large irradiance
peaks that lead to over-currents. In Scenario 33, satellite
estimations do not score any false-positive detection.

Scenario 43 features higher PV installed capacity, and
few over-voltages and more over-currents than Scenario
33. Days B and C are still the most critical for false nega-
tives due to highly volatile irradiance patterns. Scenario
43 reports less over-current false negatives than Scenario
33 because the larger PV capacity determines higher av-
erage line currents; thus smaller irradiance peaks are
enough to trigger a valid detection of a grid constraint

caused by, e.g., small clouds, because of reduced Violation.

spatiotemporal resolution and parallax elects;

2. underestimation levels of spatially averaged
POA irradiance are dilerent than of GHI. This is
to be expected because irradiance transposition is
nonlinear;

3. underestimation levels of Total PV production
are dilerent than of Spatially averaged POA due
to temperature and non-uniformly distributed PV
generation capacity that amplibes dilerently local
irradiance patterns; to understand the role played
by these two factors, Total PV production (no
T) reports the underestimation factor when the
temperature elect on PV generation is not mod-
eled. In this case, the PV production is directly
proportional to the local POA irradiance. It can
be seen that modeling temperature leads to reduc-
ing the underestimation factor;

Scenario 43 reports some false positives, denoting that
satellite estimations overestimates the PV production po-
tential in some instances. This is the case, e.g., in the
central part of Day A. as visible in Fig. 11, due to residual
positive bias.

TABLE IV. MV grid: occurrences (%) of over-voltages and
over-currents with pyranometers, and false positive (FPs) and
false negative (FNs) detections of satellite estimations.

PV penetration scenario Scenario 33 Scenario 43

) Day Al B |c| A B c
Metric
Over-voltages (PYR) 0 0 0 0 0.32 0
Over-currents (PYR) 0003 |0 6 157 | 3.54
Over-voltage FNs (SAT) b b b b 100 b
Over-current FNs (SAT) b | 100 b 16.6 | 72.4 | 58.4
Over-voltage FPs (SAT) 0 0 0 0 0 0
Over-current FPs (SAT) 0 0 0 0.4 0.2 1.7
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c. lrradiance and over-current patterns during false
negatives We perform this analysis based on Scenario
43 and partly-cloudy Day B because it reports the largest
number of over-current false negatives.

The upper-panel plot in Fig. 12 shows the CDFs of the
GHI estimation error (3) of satellite estimations during
correct, false negative and false positive detections. It
shows that the GHI error for false negatives and false
positives is respectively smaller and larger than for true
detections. This in-line with the previous insight, accord-
ing to which irradiance underestimations lead to false
negatives and overestimations to false positives.

The bottom-panel plot in Fig. 12 shows the CDFs of
the estimation errors of line currents for satellite estima-
tions (i.e., the dilerence between line currents estimated
from satellite and pyranometers). Current errors are in
per unit of the ampacity limit of the respective cable, e.g.
0.5 pu corresponds to half of the cable rating. The plot
denotes that negative errors (current underestimations)
are conducive to false negatives, and positive errors to
false positives, as to be expected. It also denotes that
the error magnitude is generally larger for false nega-
tives than for false positives. Nearly 20% of false-negative
episodes have current errors larger than 0.6 pu.
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FIG. 12. MV grid: CDF's of GHI errors of satellite estimations
(upper panel) and of line current errors of satellite estimations
(lower panel) in Day B and scenario 43.

d. Duration and inter-arrival times of false negatives
Also this analysis is performed on Scenario 43 and partly-

cloudy Day B because it reports the largest number of
over-current false negatives.

Fig. 13 shows the histograms of the duration (in the
prst row) and of the inter-arrival times (second row) of
over-current false negatives. We brst discuss the dura-
tion by referring to the histograms of the prst row. The
duration of events with persistent false negatives is gen-
erally less than 10 samples (i.e., 5 minutes), except for a
single event in nearly clear-sky day C, which is 20-sample
long. Duration patterns are similar in the 3 days; thus,
they do not seem to exhibit specibc variations according
to the sky conditions.

The histograms in the second row of Fig. 13 show inter-
arrival times mostly smaller than 10 samples, denoting
that false positives tend to be in the proximity of each
other. Day C features longer inter-arrivals, up to 120
samples, denoting that false negatives occur in 2 groups
that are 1 hour apart.

B. Low voltage network

The results for the LV network were found similar to
the MV case, except for some dilerences ascribed to the
reduced spatial scale. In this section, we briely summa-
rize the bPndings and focus on details only in the case of
mayjor dilerences.

a. Variability-underestimation factor Table V re-
ports the variability-underestimation factor for days A,

B and C in Scenario 33. Compared to the MV case,
the LV grid scores larger variability-underestimation due
to its smaller extension and reduced spatial smoothing.
Largest underestimation factors happen in the nearly
clear-sky day. Average transmission losses (not reported
in the table) are approx. 8% of the total active power
Row at the GCP.

TABLE V. LV grid: variability-underestimation factors. Met-
ric Total PV production (no T ) refers to PV production mod-
eled without considering temperature effects.

Variability-underestimation Day A Day B Day C
factor of

Spatially averaged GHI 12.6 3.8 135
Spatially averaged POA 13.5 3.9 13.4
Total PV production 9.0 3.9 14.3
Power at the GCP 7.4 3.9 13.7
Total PV production ( no T ) 9.0 4.1 14.8
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FIG. 13. Duration (first row) and inter-arrival (second row) of false negative events for the MV grid case.

b. False positive and false negativesTable VI re-
ports the number of over-currents and over-voltages in
the load Rows with pyranometers, and of false detections
with satellite estimations. Similarly to the MV case, days
B and C are the most critical for false-negative detec-
tions. False positives occur only in the scenario with the
largest PV installed capacity. The CDFs of the satellite
estimations error and line currents error conbrm identical
Pndings as before and they are omitted.

¢. Duration and inter-arrival times  Statistics of du-
ration and inter-arrival of over-current false negatives
were found comparable with the previous case, denot-
ing that dilerences in the geographical dimension at this
scale does not seem to play a role. Similar results are
also conbrmed by the analysis of the longer data set in
the next section.

TABLE VI. LV grid: occurrences (%) of over-voltages and
over-currents with pyranometers, and false positive (FPs) and
false negative (FNs) detections of satellite estimations.

PV penetration scenario Scenario 33 Scenario 43
D

) & Al B |c|l A | B |cC
Metric
Over-voltages (PYR) 0 0 0 0 0.24 | 0.03
Over-currents (PYR) 0001 | O 159 | 144 | 1.05
Over-voltage FNs (SAT) b b b b 100 100
Over-current FNs (SAT) b | 100 b 10.1 | 89.9 | 53.1
Over-voltage FPs (SAT) 0 0 0 0 0 0
Over-current FPs (SAT) 0 0 0 0 0 0.2

C. Impact of pyranometers’ inaccuracies on results

V. RESULTS ON 25 DAYS OF DATA

We consider 25 days of measurements and verify if con-
siderations developed in the former section apply. Data
are shown in Fig. 14, along with their classibcation ac-
cording to prevailing sky conditions (clear-sky, nearly
clear-sky, partly cloudy, cloudy), performed by visual in-
spection.

a. \Variability Fig. 15 shows the variability-
underestimation factor of Total PV production against
the variability of spatially averaged GHI of pyra-
nometers (debPned in Section IIl). They denote that,i),
variability is generally higher in partly cloudy and nearly
clear-sky days than in cloudy and clear-sky days, andi) ,
largest to lowest underestimations are in nearly clear-sky,
partly cloudy, clear-sky and cloudy days. Results for the
MV and LV grids are similar, however the former features
smaller axis values than the latter due to its larger exten-
sion and spatial smoothing. In this regard, it is interest-
ing to observe that despite the MV grid uses information
from 11 pyranometers on a surface of 15 ki (whereas
the LV grid uses 2, which are less than 400 meters far
apart, and extends for 0.035 kn), the variability of its
spatially averaged GHI is only 30% smaller than for
the LV grid, denoting an overall small spatial smoothing
elect.

The variability-underestimation factor was debned in
(14) as the ratio of the variability recorded by pyranome-
ters; hence, it expresses the proportion among the two.
To complement that information, we dePne the variabil-
ity dilerence

variability dilerence( z) =
variability( xpyr ) # variability( sat),

(15)
(16)

which can be interpreted as the magnitude of the un-

To assess if the accuracy of pyranometersO measure-captured variations. Fig.16 shows the variability diler-

ments could impact on results, we have repeated the sim-
ulations of the MV grid by altering all irradiance value
by +5%(i.e., given by averaging the accuracy bgures re-
ported in Section 11 C). It was veriped that results were
minimally impacted, and conclusions unchanged.

ence of Total PV production against the variability of
spatially averaged GHI of pyranometers for the MV
network. They stand in a nearly linear relationship, de-
noting that, the higher the variability of the pyranome-
ters is, the more satellite estimations underestimates the
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FIG. 15. Variability underestimation factor of total PV generation

variability of the aggregated PV production. The results

for the LV network are similar and are omitted.

b. False detections Fig. 17 compares the shares of
false positives versus false negatives for over-currents in

the MV and LV grids. In the MV grid (left panel), false

of satellite estimations vs variability of Spatially
averaged GHIof pyranometers for the MV (left) and LV grid (right). Alphabetic labels refer to the 25 days of data.

negatives are predominant in partly cloudy days (when

irradiance variations are generally large), whereas false
positives are predominant in clear-sky and nearly clearly-

sky days due to the residual positive bias of satellite es-
timations. Cloudy Day U also scores 100% false nega-
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tives due to large spatial variations of irradiance mea-
surements, as the orange envelope in Fig. 14 shows, that
are not captured by satellite estimations. Other cloudy
days are not shown in the plots because either score zero
false positive and negative, or their irradiance patterns
do not determine grid violations. Similar considerations
apply to the LV grid (right panel), with the dilerences
that the proportion of FPs is lower and more cloudy days
scores false negatives, denoting higher susceptibility to
local irradiance conditions.

c. Duration and inter-arrival times  The analysis on
the duration and inter-arrival on the 25-day data set did
not show specibc patterns with respect to sky-conditions
and are not reported here. Also, dilerences between the
MV and LV grids did not emerge in the comparison.

d. Congested lines The plot in the upper left panel
of Fig. 18 shows the occurrences of over-currents in the
MV grid according to sky conditions. Over-currents
mostly happen in nearly clear sky days (where irradi-
ance feature very large values due to cloud enhancement)
followed by clear-sky days and partly cloudy days. Con-
gested lines are the number 3 and 15-17, which, from
Fig. 4, are the closest to the GCP and the most critical
because they are subject to the aggregated power 3ows.
The plot in the bottom left panel of Fig. 18 shows the
occurrences of over-currents false negatives according to
sky conditions. They occur mostly in nearly clear-sky
and partly cloudy days, and less in clear-sky days, when
satellite estimations are able to detect irradiance dynam-
ics better.

The plots in the right panels of Fig. 18 show the same
results for the LV network. Congested lines are 1-3 and
11-16, which are those close the GCP and in the lateral
feeders that interface a large amount of generation, re-
spectively. Distribution of both over-currents and false
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VI. CONCLUSIONS AND PERSPECTIVES

a. Summary of the work We investigated the perfor-
mance of HelioClim-3 v.5 satellite estimates of GHI com-
pared to ground-based measurements from pyranometers
(HOPE campaign) in applications to modeling the vari-
ability of distributed PV generation and detection of grid
constraints violations (nodal voltages and line currents).
The analysis was performed with load Bow simulations
considering the grid and demand specibcations of the CI-
GRE benchmarks for LV and MV systems. Distributed
PV systems were sited and sized with a procedure from
the literature to saturate the hosting capacity of the
grids. PV generation at each node was modeled as a
function of installed capacity and GHI with a transpo-
sition model. Satellite estimations were de-biased on a
daily basis to retain the focus the analyses on variability
only. Pyranometers measurements were post-processed
to remove outliers and potential other bad data close
to missing measurements. Analysis were conducted at a
30 sec resolution.

b. Key results The analyses were carried out for 28
daily probles of the irradiance with several typical sky
conditions: clear-sky, nearly clear-sky, partly cloudy, and
cloudy. It was found that:

¥ at the edge of the gridsO PV hosting capacity, satel-
lite estimations could not detect mild over-current
episodes in both LV and MV grids, leading to false
negative estimations;

¥ false negatives were more likely in partly cloudy
(when local cloud enhancement phenomena alect
PV production patterns) and cloudy days. False
positives were more likely in nearly and clear-sky
days due to a residual local positive bias of satellite
estimations;

¥ false negative detections were persistent for long
time intervals (e.g., tens of minutes) due to the
residual negative bias of satellite estimations, as
well as sporadic (e.g., single false negatives with
inter-arrival times of minutes) due to fast Buctua-
tions of the irradiance that were not captured by
satellite estimations;

¥ satellite estimations underestimated the variability
of the total PV production and the power RBow at
the GCP in both LV and MV grids. Underestima-
tions were less severe in the MV grid case due to
the larger geographical scale. Non-uniformly in-
stalled PV generation capacity and temperature
were found alecting variability patterns, suggest-
ing that these phenomena should be taken into con-
siderations when, for instance, plan reserve require-
ments.

c. Implications and perspectives There is no disput-
ing on the practical value of satellite estimations. How-
ever, results suggest that, when using irradiance estima-

negatives show the same features as discussed for the MV tions with similar attributes as those considered (e.g.,

case.

spatiotemporal resolution and parallax), proper counter
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measurements or data reconciliation strategies with lo-
cal estimates should be adopted to limit the shortcom-
ings described above. These considerations also extend
to forecasts, that are typically elaborated starting from
satellite images and are delivered on relatively coarse ge-
ographical mesh grids.

Implications are case specibc. For TSOs and balance
responsible parties, coarse irradiance estimates in con-
Ruence with high levels of installed PV generation ca-
pacity can lead to underestimating the variability of PV
generation, thus underestimating reserve requirements
which should be therefore scheduled adopting conserva-
tive margins (this can also apply to DSOs if grid codes
require them to compensate deviations from pre-debned
dispatch plans). DSOs, when planning the connection
of new PV facilities, should also implement conservative
margins from grid constraints or adopt realistic models of
spatiotemporal variations, especially when near the PV
hosting capacity of the grid, to avoid false negative detec-
tions. In the context of real-time and predictive control of
grids for congestion management, dispatch, voltage con-
trol, and peak shaving, results suggest that spatiotempo-
ral coarse estimations could be complemented with real-
time local information at a higher resolution to perform

better decisions.

Current results were elaborated from load Row simula-
tions. The uncertainty related to pyranometers measure-
ments and two dilerent anisotropic transposition models
(Hay-Davies and Perez) were found to impact on numer-
ical results marginally without altering conclusions. If
beld data from an experimental setup with many grid-
connected distributed PV plants will become available, a
comparison with the proposed results would be of deb-
nite interest to conbrm bndings as they would inherently
include all modeling uncertainties (i.e., direct/diluse sep-
aration, transposition, panelsO spectral response and ef-
bciency, and distribution gridOs parameters). Also, the
elects of uncorrected bias should be further investigated;
even if this is not expected to play a signibcant role on
variability, it could certainly have a dominant impact on
false positive and false negative detections of grid con-
straints violations.
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