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Abstract

The increasing interest in integrating volatile resources into microgrids implies

the necessity of quantifying the uncertainty of photovoltaic (PV) production

using dedicated probabilistic forecast techniques. The work presents a novel

method to construct ultra-short-term and short-term prediction intervals (PIs)

for solar global horizontal irradiance (GHI). The model applies the k-means

algorithm to cluster observations of the clear-sky index according to the value

of selected data features. At each timestep, the features are compared with the

actual conditions to identify the representative cluster. The lower and upper

bounds of the PI are calculated as the quantiles of the irradiance instances

belonging to the selected cluster at a target confidence level. The validation

is performed in 3 datasets of GHI measurements, each one of 85 days. The

model is able to deliver high performance PIs for forecast horizons ranging from

sub-second to intra-hour ahead without the need of additional sensing systems

such as all-sky cameras.

Keywords: Solar forecasting, Prediction interval, Ultra-short term, k-means

algorithm.

1. Introduction1

The thrust toward increasing the penetration of non-dispatchable renewable2

generation in the electrical grid requires to redefine conventional practices to3
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assure reliable power system operation, see for example [1, 2]. A paradigm in-4

creasingly advocated in the recent technical literature to cope with the variabil-5

ity of stochastic generation is the development of robust and predictive controls.6

They take advantage of short-term forecasts of renewable generation in order7

to plan adequate counteractions to prevent, or mitigate, operational issues re-8

lated to renewables power fluctuations. Examples include the dispatchability9

of renewables, achieving self-consumption of locally generated electricity, and10

the short-term redispatching of conventional generation units, see for example11

[3, 4, 5, 6]. The period of the redispatch control action normally depends on12

the availability of the reserve in a given power grid and on the performance of13

the forecasting tools accounting for the uncertainties. For the case of micro-14

grids, their limited physical extension and the low granularity of the resources15

involve the necessity of coupling the reserves dispatch with their real-time con-16

trol. In this respect, a new protocol for real-time control of microgrids has17

been presented in the recent literature; in this framework, the control decision18

is updated with a sub-second resolution, [7, 8]. Since photovoltaic (PV) systems19

represent one of the major resources in modern microgrids, the availability of20

irradiance forecasting is beneficial to address the aforementioned challenges at21

forecast horizons from sub-second up to intra-hour, [2]. A further concern as-22

sociated with the dense penetration of PV installations in distribution systems23

and microgrids is the lack of the spatial smoothing e↵ect, resulting in large vari-24

ations of the solar irradiance. As an example, Figures 1a and 1b respectively25

show daytime global horizontal irradiance measurements (GHI, recorded at the26

EPFL campus by using a pyranometer) and the power consumption of a group27

of EPFL buildings equipped with a 95 kWp PV-roof system. As visible, GHI28

variations (which varies up to 85% in magnitude in less than two minutes) cause29

very steep fluctuations of the power production and consumption. The avail-30

ability of high-quality ultra-short-term and short-term GHI forecast enables the31

possibility of taking preemptive control actions and mitigating the e↵ect of its32

fluctuations.33

In general, the choice of the forecast method is strictly related to the target34
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Figure 1: GHI and aggregated power profile (load and PV production) as a function of the

UTC Time, registred at the EPFL campus on the 15
th

of May 2016.

forecast horizon and geographical scale. As explained in [9], day-ahead regional35

irradiance forecasting relies on satellite observations and numerical weather pre-36

dictions (NWPs). However, we here focus on local and shorter term forecasts37

(lower than one hour) where Artificial Intelligence (AI) methods are generally38

applied, [10]. The use of all-sky cameras is a promising solution for intra-hour39

forecast horizons, as introduced in [11, 12]. To the best of our knowledge, the40

only method addressing the problem of solar irradiance forecast at sub-second41

time scale is the one proposed in [13].42

Two main kinds of forecast are conceived: a first kind (deterministic) con-43

siders only the point forecast while the second one (probabilistic) includes infor-44

mation accounting for the intrinsic uncertainty of the prediction and it is more45

appropriate when dealing with control and decision making in modern power46

systems, [14]. Especially in the case of fast irradiance ramps, generally di�cult47

to predict, PIs are necessary to define the worst-case scenario that should be48

considered in the control decision process.49

Regarding GHI point predictions, the simplest forecast model is the persis-50

tent one, which is commonly used as a benchmark for performance evaluation.51

It assumes that the GHI remains constant with the forecast horizon. In gen-52
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eral, most of the point forecast techniques are based on AI methods. A more53

deterministic approach consists in detecting the position of the clouds, deduc-54

ing clouds motion and calculating the time when a cloud covers the sun, e.g.55

[11, 15]. Apart from cloud detection and motion, sky images contain more in-56

formation impacting the GHI prediction: examples are the cloud cover and the57

type of clouds. This kind of information can be combined with machine learning58

methods to compute the forecast, e.g. [16, 17].59

Several works address the problem of probabilistic forecast and propose PIs60

computation models. Probabilistic solar power forecast is proposed in [18, 19]61

where a set of likely predictions (i.e. an ensemble) is provided using a historical62

set of variables and deterministic meteorological models. Authors of [18] use63

a distance criterion to retrieve similar past forecasts, under the assumptions64

that their errors are likely to be similar to the errors of the current forecast.65

These methods refer to 0-72 hours forecast horizons, considering hourly power66

data. In [20], a hybrid model is proposed, integrating Support Vector Machine67

(SVM), ANN and sky imaging techniques to deliver real-time PIs for direct68

normal irradiance (DNI) for 5, 10, 15, 20 minutes ahead. At each time step,69

the computational time is less than 5 seconds. Another stochastic approach in70

[21] proposes the design of a k-nearest neighbors (KNN) algorithm. The KNN71

algorithm is used to predict the GHI and DNI and their uncertainty intervals,72

for time horizons from 5 to 30 minutes. More recently, Authors of [22] proposed73

a data-driven method to construct GHI probability densities for one hour-ahead74

predictions, using nonparametric bootstrap and a map of solar position. The75

developed method has low computational complexity, requiring 0.56 seconds76

on a personal computer. In [23], point forecasts are generated using AutoRe-77

gressive Moving Average (ARIMA) and the associated PI is calculated using a78

Generalized AutoRegressive Conditional Heteroskedasticity model (GARCH),79

considering a prediction horizon from 10 minutes to 6 hours. The use of recur-80

sive formulas, to update the model parameters in real-time, allows to reduce the81

computational complexity of the method.82

Having stated this, we note that the available literature lacks of a unique83
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forecasting tool for prediction horizons ranging from sub-second up to intra-84

hour and capable of operating at low levels of aggregation, where the level of85

volatility is higher due to the reduced spatial smoothing e↵ect. While many86

methods have been proposed for intra-hour GHI forecasting and might be ap-87

plied to deliver ultra-short-term predictions, there is at least the compelling need88

of re-assessing their performance in the light of the requirements of real-time89

control of local power systems. Moreover, computational complexity becomes a90

key concern when considering the high reporting rate of ultra-short predictions,91

implying that available forecasting methods with complex on-line training pro-92

cedures (like ANNs, heuristic optimization-based and sky imaging) might not93

be suitable.94

We propose a novel nonparametric method for ultra-short term forecasting95

of the global horizontal irradiance (GHI) to deliver predictions with a forecast96

horizon in the range from 500 ms to 5 minutes, thus suitable both in the context97

of real-time control of microgrids and energy management strategies. PIs com-98

putation is based on a well-known pattern recognition technique called k-means99

clustering, [24]. A training dataset is first clustered considering two empiri-100

cally selected influential variables. Then, PIs are calculated by extracting the101

quantiles of the cluster which resembles at most the actual conditions. A clear-102

sky model is also introduced for the de-trending of the GHI time series. The103

method does not require any information from sky-imaging since it only relies104

on measurements of the GHI, it is computationally e�cient and needs a limited105

training dataset. As later qualified in the paper, the real-time generation of106

the PIs takes, for one time instance, less than 0.5 ms. Thus, the method is107

applicable even when the control decision has to be taken at sub-second time108

scale.109

The paper is organized as follows: Section 2 defines the problem and intro-110

duces the nomenclature, Section 3 explains in details the methodology adopted111

to deliver the PIs and discusses its computational complexity. Section 4 de-112

scribes the available datasets and their characterization. Section 5 presents the113

results, comparing them with available benchmark methods. Section 6 shows114
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the main conclusions.115

2. Preliminaries on the Adopted Nomenclature116

PIs give a range of possible values in which the future realization is expected117

to lie with a given confidence level ↵, [25]. At the timestep t, we denote the118

one-step-ahead PI at confidence level ↵ as composed by the upper and lower119

bounds:120

⇣
I
"↵
t+1|t, I

#↵
t+1|t

⌘
. (1)

Note that we do not have any assumption on the distribution of the time series121

since we adopt a nonparametric approach.122

GHI measurements are pre-processed in order to remove the daily and sea-123

sonal components due to changes of the sun position. This is achieved by intro-124

ducing the clear-sky indexK, which is defined as the ratio between the measured125

GHI and the clear-sky irradiance, respectively denoted by I and Ics:126

K =
I

Ics
. (2)

The clear-sky irradiance is the irradiance that would reach the ground in127

clear-sky conditions, i.e. absence of clouds. It is obtained by applying the clear-128

sky model implemented in the geographical information system GRASS, which129

also account for topological shading [26, 27].130

3. Methods131

The principle behind the proposed forecasting approach is that, if a real-132

ization of the solar irradiance happened in the past under certain measurable133

conditions, then it is likely to happen again under the same confluence of cir-134

cumstances.135
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The proposed PI estimation method consists in clustering historical data136

according to the value of certain influential variables, introduced in the following.137

The clusters are therefore used as empirical conditional probabilities of future138

realizations and used to compute the PI by calculating the quantiles according139

to a given confidence level. In particular, these influential variables should140

be representative of the irradiance fluctuations since it is the main cause of141

the uncertainty associated with solar forecasts. These variables, inputs of the142

clustering process, are selected according to the literature that considers the143

average and the variability of the clear sky-index as the most influential ones,144

[21, 28]. We consider a training dataset of historical clear-sky index observations145

K1, . . . ,KN , from which we extract the following influential variables:146

• the average clear-sky index value on a mobile window of length n consid-147

ering the most recent data points:148

Mi =
1

n

iX

j=i�n

Kj , i = n+ 1, . . . , N (3)

of which we consider the normalized version M
⇤
i . Namely, we normalize149

the sequence M0, . . . ,M1 to a length of 1; 1
150

• the clear-sky index variability:151

Vi =

vuut 1

n

iX

j=i�n

(Kj �Kj�1)
2
, i = n+ 1, . . . , N (4)

which is a measurement of GHI fluctuations. As for the previous case, we152

consider the normalized version V
⇤
i .153

Normalization of the influential variables is required to enable a fair compar-154

ison between parameters with di↵erent scale. For each observation, the vector155

pi of influential variables is:156

pi = (M⇤
i , V

⇤
i ), i = n+ 1, . . . , N. (5)

1
The normalized version of a vector X is a vector X⇤

= X/|X|, where |X| is the norm of

X.
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The process to compute PIs is performed in two ways:157

• Method A: we cluster the original clear-sky index time series;158

• Method B: we cluster the di↵erentiated clear-sky index time series:159

�Ki = Ki �Ki�1, i = 2, . . . , N, (6)

to verify if di↵erencing leads to better prediction performance.160

3.1. Clustering of the training set161

The k-means iterative algorithm is firstly used to classify historical observa-162

tions of clear-sky index according to predefined influential variables. K-means163

clustering is a partitioning algorithm that allocates each observation into ex-164

actly one of the k clusters, each one defined by a representative centroid. In165

particular, k centroids are at first randomly selected (the first centroids are sim-166

ply uniformly random observations). Then, each vector of the training dataset167

is assigned to the closest centroid, and the centroid is iteratively recalculated as168

the mean of the vectors of each class until convergence is reached (i.e., centroids169

do not change anymore between iterations).170

Method A171

We apply the k-means algorithm to cluster the vectors pi belonging to the172

training set, being k the number of clusters. The algorithm assigns to each vector173

pi a cluster index l between 1 and k and determines the centroids locations174

cl = (M⇤
l , V

⇤
l ) for l = 1, . . . , k.175

We denote the generic cluster Gl as composed by all the clear-sky indexes176

Ki+1 for which pi has index l.177

Method B178

We apply the same clustering procedure described above for Method A.179

However, we denote the generic cluster �Gl as composed by all the di↵er-180

entiated clear-sky realizations �Ki+1 for which pi has index l.181

182
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An example of the k-mean partitioning of the influential variables is shown183

in Fig. 2 where the normalized clear-sky index average and variability are184

clustered.185

It is worth noting that the k-means clustering of the training dataset can186

be performed o↵-line on historical data. This is a key aspect if considering the187

high reporting rate of predictions for microgrid applications since it allows to188

reduce the computational complexity.189

0 5 · 10�3 1 · 10�2 1.5 · 10�2 2 · 10�2 2.5 · 10�2
0

2 · 10�2

4 · 10�2

M*

V
*

Figure 2: Example of k-means clustering obtained for k = 5. The x and y axis represent the

normalized clear-sky index average and variability, respectively. The black marker signs the

centroids.

3.2. Prediction Intervals190

In this section we describe how PIs are computed, distinguishing between191

the two proposed methods.192

Method A193

Starting from the clusters G1, . . . , Gk defined in the previous section, the194

PIs at the target confidence level ↵ can be computed as:195

q
"↵
l = (1 + ↵)/2 quantile of Gl, l = 1, ..., k (7)

q
#↵
l = (1� ↵)/2 quantile of Gl, l = 1, ..., k. (8)
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For increased computational e�ciency, we note that also this operation can be196

performed o↵-line, and the PIs for each class can be stored.197

Say being at time t, the objective is to perform the on-line computation of198

the PI for the next time interval t + 1. The vector of influential variables at t199

is denoted by pt = (M⇤
t , V

⇤
t ). It is calculated normalizing the raw influential200

variablesMt, Vt with respect to those available in the training data set. The next201

step is the calculation of the Euclidean distances between pt and the centroids202

cl:203

dl = kcl � ptk2, l = 1, ..., k (9)

which is used as a similarity criterion to select the cluster representative of the204

future clear-sky outcome. We indicate with l̂ the index corresponding to the205

cluster with minimum distance. It is used to select the quantiles used in the PI206

computation as:207

K
"↵
t+1|t = q

"↵
l̂

. (10)

K
#↵
t+1|t = q

#↵
l̂

(11)

Method B208

Starting from the clusters �G1 , . . . ,�Gk obtained from the di↵erentiated209

GHI time series, the PIs at the target confidence level ↵ can be computed as:210

q
#↵
l = (1� ↵)/2 quantile of �Gl , l = 1, ..., k (12)

q
"↵
l = (1 + ↵)/2 quantile of �Gl , l = 1, ..., k. (13)

Also in this case, the quantiles extraction is computed o↵-line. The on-line211

computation of the PIs consists in finding the index l̂ of the cluster with centroid212

at the minimum distance from pt. It is used to select the quantiles used in the213

PI computation as:214

K
"↵
t+1|t = Kt + q

"↵
l̂

, (14)

K
#↵
t+1|t = Kt + q

#↵
l̂

. (15)
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i.e., the current measurement is summed to the upper and lower quantiles of215

the di↵erentiated time series.216

217

It is important to note that, so far, PIs are computed to forecast the clear-sky218

index. The last step consists in computing the PI for the GHI:219

Î
"↵
t+1|t = K

"↵
t+1|tIcs,t+1, (16)

Î
#↵
t+1|t = K

#↵
t+1|tIcs,t+1. (17)

In the results section, performance of methods A and B are evaluated by com-220

paring the estimated PIs as defined in (16)-(17) with the GHI measurements.221

3.3. Selection of the Parameters222

The parameters we need to specify when applying the k-means clustering223

procedure are:224

• The number of samples n used in (3) and (4);225

• The number of cluster k used for the partition of the training dataset;226

• The length of the training dataset N .227

The selection of the parameters values is a sensitivity process that is exhaustively228

evaluated in Section 5. The assessment is performed in a searching dataset,229

and then the selected values are applied in a testing dataset for performance230

evaluation.231

While it was seen from the results that variations of n in the range from 2232

to 5 do not, in general, alter modeling performance, the values of k and N are233

interdependent and the selection of these two parameters needs to be carried out234

simultaneously (i.e. we need to find the combination of k and N with the best235

performance). For each specific case, a diagnostic analysis should be performed.236

We consider here two main approaches to fix k and N as described in the next237

subsections.238
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3.3.1. A-posteriori Selection of k with Exhaustive Search (ES)239

Several (k,N) combinations are attempted in a searching dataset: the can-240

didate combination is the one with best a-posteriori prediction performance.241

These values are then used to evaluate the performance of the testing dataset,242

supposing that it exhibits similar characteristics of the searching set. This ap-243

proach can become computationally expensive, therefore motivating the devel-244

opment of methods for the a-priori selection of the free parameters, as described245

in the next subsection.246

3.3.2. A-priori Selection of k with Silhouette Analysis (SA)247

The objective is to use Silhouette Analysis, [29], to improve the partitioning248

of the training dataset, allowing for an a-priori selection of parameter k and249

in order to avoid the exhaustive approach. The Silhouette Analysis consists in250

some main steps:251

• a small value of k is chosen (e.g. k = 5) and the clustering algorithm is252

run;253

• the silhouette value for a generic point i is calculated as:254

s(i) =
a(i)� b(i)

max(a(i), b(i))
(18)

where a(i) is the average distance from point i to the other points in the255

same cluster, while b(i) is the minimum average distance from instance i256

to points in a di↵erent cluster, minimized over clusters. Parameter s is a257

measure of how close the instance is to the other instances in its cluster258

and how far it is to those in the other clusters. In general, a silhouette259

value close to 1 is desired because it means that the point is well clustered260

while a value close to -1 means misclassification;261

• the mean of the silhouette values is computed. If most points have a high262

silhouette value, then the clustering is appropriate;263

• the value of k is augmented and it is evaluated if having more clusters264

allows for a better partitioning (higher mean of the silhouette values);265
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• the number of clusters is selected equal to the value k above which we do266

not see any improvement in terms of increasing of the average silhouette267

value.268

As shown in subsection 5.3.2, the value of N required to converge at constant269

k is not sensitive to the characteristics of the dataset. In general, for each270

forecast horizon and given k, it is possible to identify a value of N above which271

performance is close to convergence. Above this value, small oscillations are272

explained by the intrinsic stochasticity of the data. This feature is important273

for the modeler since it allows for the reduction of the parameters to be found.274

3.4. Algorithms time complexity275

In this section, we evaluate the time complexity of the real-time computation276

of the proposed algorithms. This is an important aspect because they are de-277

signed with the stated objective of delivering PIs to real-time control processes278

for electrical power systems.279

The algorithms consist of two parts, the training phase and on-line compu-280

tation of PIs. The former does not have any real-time requirement and can be281

performed o↵-line. The latter phase is instead time critical, and it is to per-282

form with a hard-real deadline. First, it consists in calculating the normalized283

influential variables, (3)-(4), an operation with constant time complexity, O(1),284

which involves algebraic operations. Then, we have the computation of k norms,285

O(k), and a minimum search, which can be performed e�ciently with a merge286

search, O(k log(k)). Considering that k is fixed by design, the time complexity287

of the real-time computation is constant time, O(1), therefore denoting that288

complexity does not grow with the size of the problem (scalability). Statistics289

on the execution time of the algorithms are given in Section 5.8.290

4. Data291

4.1. Data acquisition292

Global horizontal irradiance measurements are collected at 50 ms resolu-293

tion at the Écolecole Polytechnique Fédérale de Lausanne (EPFL) by using an294
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Apogee SP-230 all-seasons pyranometer which is located at the following GPS295

coordinates: 46.518397-N, 6.565229-E. We consider three datasets of 85 days296

each, corresponding to di↵erent periods of the year. The first contains irradi-297

ance measurements from July to September 2015 (Summer), the second from298

October to December 2015 (Autumn), and the third from January to March299

2016 (Winter). Each dataset is divided into a searching subset of 55 days and300

a testing one composed of the remaining 30 days.301

The original time series is down-sampled to three di↵erent resolutions: 500302

ms, 1 minute and 5 minutes. These series are used to compute one-step-ahead303

PIs for the corresponding forecast horizon. Down-sampling is computed by304

averaging the intermediate samples.305

It is worth noting that applying the clear-sky normalization causes very high306

values of K close to sunrise and sunset. Therefore, we consider only daylight307

values covering the period of the day for which the clear-sky index does not308

diverge.309

4.2. Data classification310

Characterizing the dataset is important for performance comparison and311

evaluation. Indeed, the robustness of the method should be tested during pe-312

riods of di↵erent irradiance volatility. In our case, we are interested in charac-313

terizing the three available datasets: Summer, Autumn, and Winter. First, we314

give an information regarding the weather of the selected period and location.315

In particular, we retrieve cloud cover data 2 from MeteoSwiss Idaweb services,316

[30], from two weather stations in the vicinity of our installation. The average317

cloud okta values for the three seasons are: 3.86 okta in Summer, 4.67 okta in318

Autumn and 5.96 okta in Winter.319

To be more specific, we introduce a criterion consisting in counting the per-320

2
Cloud cover corresponds to the fraction of the sky obscured by clouds when observed from

a given location. The unit of measurement is the okta, ranging from 0 (completely clear-sky)

to 8 (completely overcast).
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centage of periods with a volatility lower than a given threshold. For each321

timestep t, we calculate the per-unit di↵erence as �It = (It�It�1)/Imax, where322

Imax = 1000 W/m2. For each prediction horizon, we establish a threshold for323

�It, above which the observation at time t is considered with high volatility.324

The threshold is empirically computed as the 99% quantile of the �I time se-325

ries obtained by manually selecting a period of 3 clear-sky days. The values are326

shown in Table 1 for di↵erent forecast horizons.327

Table 1: Thresholds.

Time Horizon Thresholds

500 ms 0.0004

1 min 0.011

5 min 0.025

Table 2: Percentage of periods with high irradiance volatility.

Forecast Horizon

Season 500 ms 1 min 5 min

Summer 16 17 22

Autumn 5 9 12

Winter 13 15 20

The percentage of periods exceeding the threshold of GHI high volatility is328

shown in Table 2, for each dataset and for di↵erent forecast horizons. As it can329

be observed, the Summer period is characterized by the highest GHI volatility,330

followed by Winter and Autumn.331
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5. Results and Discussion332

First, the metrics used for performance evaluation are introduced in Subsec-333

tion 5.1. Then, Subsection 5.2 shows the advantage given by the introduction334

of a clear-sky model at di↵erent forecast horizons. In Subsection 5.3 the sensi-335

tivity of the performance with respect to the selection of the model parameters336

is discussed. In Subsections 5.4-5.6 the performance of the proposed methods337

is benchmarked against existing techniques. First, we compare the proposed338

methodology with the symmetric quantile extraction, which is the simplest way339

to construct our intervals. We use the empirical quantiles extracted from the340

distribution of the time series to build the PIs as in (10)-(11) and (14)-(15), re-341

spectively. It is important to highlight that the quantiles at time t are extracted342

from the whole time series, from t = 0 to t� 1.343

As a second benchmark, we compare our method with a model commonly used344

in forecasting. We first generate a point forecast using AutoRegressive Moving345

Average model (ARIMA), [31], with Double Exponential Smoothing. Then PIs346

are constructed assuming a Gaussian distribution of the point forecast error as:347

K
"↵
t+1|t = K̂t+1 + ⌘↵

p
�t, (19)

K
#↵
t+1|t = K̂t+1 � ⌘↵

p
�t. (20)

where K̂t+1 is the point forecast obtained by the ARIMA model, ⌘↵ is the348

quantile of the normal distribution corresponding to the target confidence level349

↵ and �t is the variance of the forecast error.350

Unless otherwise indicated, the target confidence level used for the following351

analysis is fixed equal to 95%.352

Subsection 5.7 presents and discusses the reliability diagrams. Finally, statis-353

tics of the method execution time are provided in Subsection 5.8.354

5.1. Metrics355

We use three standardized metrics from the existing literature to evaluate the356

performance of the proposed methods [20, 32]. The first metric is the PI coverage357
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probability (PICP) which counts the number of times that the realization falls358

inside the PI for a given confidence level ↵:359

PICP =
1

L

LX

t=1

ct (21)

where L is the total number of forecast instances of the testing dataset and360

ct =

8
><

>:

1, Î
#↵
t+1|t  It+1  Î

"↵
t+1|t

0, otherwise.
(22)

Then, to account for the fact that the wider the PI, the easier it is to have361

a realization falling inside it, we measure the PI normalized averaged width362

(PINAW):363

PINAW =
1

LImax

LX

t=1

(Î"↵t+1|t � Î
#↵
t+1|t), (23)

where Imax = 1000 W/m2. The value has been selected accordingly to the work364

in [21], that is later used as benchmark for performance comparison. The third365

metric quantifies the trade-o↵ between having a large coverage probability and366

small interval width. It is called coverage width-based criterion (CWC):367

CWC = PINAW(1 + �(PICP)e�µ((PICP)�µ)) (24)

where368

� =

8
><

>:

0, PICP � ↵

1, PICP < ↵.

(25)

The parameter µ can be tuned based on how much bad PIs are to penalize,369

see [32]. We select here µ = 10. PIs should have high PICP (higher or equal to370

the target confidence level) coupled with a low value of PINAW.371

5.2. Clear-sky index and GHI time-series comparison372

A first analysis aims at assessing the di↵erence between using the measured373

irradiance (GHI) or the clear-sky index (K) time series as inputs for the PIs374
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Figure 3: CWC as a function of the time horizon. Comparison between the use of the GHI

time series (original) and the clear-sky index one (normalized).

computation method. In particular, we apply methods A and B and we increase375

the forecast horizon to evaluate when the inclusion of a clear-sky model becomes376

advantageous.377

Fig. 3 shows that the CWC is, in general, lower (better performance) when378

using the clear-sky index. In particular, the advantage of using a clear-sky379

model becomes evident for time horizons longer than 1 minute. As expected,380

the normalization of the time series becomes more important at higher fore-381

cast horizons, when the e↵ect of the sun position becomes more dominant.382

When referring to ultra-short term horizons, fluctuations of solar irradiance are383

mainly related to cloud motion and the importance of a clear-sky model becomes384

marginal. Since the inclusion of a clear-sky model only leads to similar or bet-385

ter prediction performance, the proposed methods are applied to the clear-sky386

index time series.387
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Figure 4: CWC as a function of n for di↵erent forecast horizons. N is equal to 30 days. k is

equal to 5 for cases (a)-(c) and equal to 30 for case (d)-(f).

5.3. Parameters Selection and Sensitivity analysis388

5.3.1. Selection of parameter n389

Fig. 4 shows the CWC metric as a function of n (3-4) obtained from a-390

posteriori analysis of the performance of the whole Autumn dataset. Method B391

is applied. The analysis considers di↵erent forecast horizons for both k=5, cases392

(a)-(c), and k=30, cases (d)-(f). It is possible to see that performance is not393

very sensitive to variations of n in the range from 2 to 5. From an a-posteriori394

analysis of our datasets at di↵erent forecast horizons, we can conclude that n395

can be fixed to a value between 2 and 5, for all the considered cases. Indeed,396
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analogous conclusions can be inferred for Method A and di↵erent datasets (not397

shown here because of the similar behavior). These values of n are a good trade-398

o↵ between having enough significant measurements to compute the influential399

variables and avoiding to consider realizations that are too far from the actual400

conditions. The results presented in what follows are obtained with n = 3.401

5.3.2. Selection of parameter k and N402

As explained in Subsection 3.3 two main procedures are proposed to assign403

parameters k and N . In the case of the exhaustive search, we isolate 55 days404

of each dataset to perform the exhaustive searching. The number of clusters k405

can vary between one (single cluster) and the total number of training samples406

(each data is assigned to its own cluster). Since the computational e↵ort of the407

k-means algorithm is linearly dependent to the number of clusters and to the408

number of data, we here limit k to 1000 and N to 30 days. The dashed lines in409

Figures 5, 6 and 7 show the value of k that returns the best performance for a410

fixed N . This k is obtained a-posteriori by applying methods A and B to the411

searching dataset of 55 days (kES,A and kES,B , respectively). The three figures412

refer to di↵erent datasets. Each figure includes three sub-figures referring to413

the three forecast horizons, respectively. It is possible to note that, due to the414

heuristic nature of the methods, the optimal value of k cannot be known a-priori415

and it varies among the di↵erent considered cases (namely, we do not have a416

global optimum). Therefore, we select k and N as the combination returning417

the best prediction performance (minimum CWC), found a-posteriori. These418

values found for the searching set of 55 days are then applied for performance419

evaluation in the remaining 30 days.420

In the case of the silhouette analysis, k is calculated for di↵erent N as the421

one maximizing the average silhouette of the training set and it is shown in422

Figures 5, 6 and 7 with the solid line. The value of k that maximizes the423

average silhouette does not correspond to the one returning the best forecasting424

performance. However, we notice that its value does not vary with N and can425

be selected independently. In order to determine N in the case of the silhouette426
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analysis, we fix k equal to the one returned by the analysis (k=5) and we evaluate427

the prediction performance for a di↵erent number of training days. Figures 8, 9428

and 10 show the CWC (in logarithmic scale) as a function of N . They refer to429

500 ms, 1 and 5 minutes, respectively. Each figure consists of two plots, showing430

the performance for Method A and B, respectively. We can make the following431

observations:432
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Figure 5: Number of clusters k as a function of the length of the training dataset. The Summer

dataset is selected for the analysis. The dashed lines refer to the value of k corresponding

to maximum performance for Method A and B, respectively. It is calculated a-posteriori by

applying the ES. The solid line refers to the value of k from the SA.

• For each forecast horizon, it is possible to identify a first drop of CWC433

after which performance tends to stabilize. The value of N that leads434

to performance stabilization is not sensitive to the dataset and can be435

fixed independently. On the contrary, as it is shown in the next sections,436

performance at convergence depends on the nature of the dataset and, in437

general, the behavior of the PIs depends on the volatility content of the438

dataset.439

• For the sub-second time horizon and Method A we have a first drop440

of CWC after about one day and then performance tends to stabilize.441
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Figure 6: Number of cluster k as a function of the length of the training dataset. The Autumn

dataset is selected for the analysis.
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Figure 7: Number of cluster k as a function of the length of the training dataset. The Winter

dataset is selected for the analysis.

Method B reaches convergence after few hours of training with subsequent442

small CWC oscillations.443

• For time horizon of 1 minute we have a first drop of CWC after about 5444

days of training and then performance smooths out more slowly.445
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• For time horizon of 5 minutes we have a first drop of CWC after about 5446

days of training and then a second drop after 10 days. Then, performance447

smooths out more slowly.448

In conclusion, when applying the exhaustive search we use the optimal449

combination of k and N found for the 55 days dataset as candidates for450

performance evaluation in the remaining 30 days. On the contrary, when451

applying the silhouette analysis approach, we select k=5 and N equal to452

1, 5 and 10 days respectively for three time horizons. These values are453

valid for all the three datasets. A comparison between the two approaches454

is presented in what follows.455

5.4. Ultra-short term forecasting: Performance Evaluation456

We focus here on sub-second forecast horizon: one-step-ahead PIs at 500 ms.457

At first, we analyze the two proposed approaches to compute k and N . Then,458

performance of methods A and B is evaluated, and therefore compared with459

existing methods from the technical literature.460

5.4.1. Exhaustive Search and Silhouette Analysis461

In this section, we compare the performance obtained by applying the ex-462

haustive search and the silhouette analysis to determine k and N . Furthermore,463

results are compared with the optimal performance found a-posteriori to evalu-464

ate how far the estimations are from the optimum. Evaluation is carried out in465

the testing set of 30 days, for each one of three datasets.466

Results are shown in Tables 3 for methods A and B. The comparison con-467

siders metric CWC. For 500 ms forecast horizon, the exhaustive search is out-468

performing the silhouette analysis and returns performance very close to the469

optimal a-posteriori. Indeed, when dealing with high sampling frequency, the470

large amount of data would require a number of clusters which is much higher471

than the one returned by the silhouette analysis. For sub-second time horizons,472

we proceed our analysis by using the exhaustive search method.473

The following additional conclusions can be drawn from this analysis:474
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Figure 8: CWC as a function of the number od training days for 500 ms time horizon. CWC

is shown in logarithmic scale.
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Figure 9: CWC as a function of the number od training days for 1 min time horizon. CWC

is shown in logarithmic scale.
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Figure 10: CWC as a function of the number od training days for 5 min time horizon. CWC

is shown in logarithmic scale.

Table 3: CWC [%] for 500 ms, ↵=95%.

Season

Method Summer Autumn Winter

Optimal 2.88 1.18 2.55

Silhouette 51 27.7 20.3

Exhaustive Search 4.69 2.41 4.03

(a) Method A

Season

Method Summer Autumn Winter

Optimal 0.24 0.046 0.13

Silhouette 0.37 0.12 0.27

Exhaustive Search 0.27 0.047 0.15

(b) Method B

• For ultra-short term forecast, Method B outperforms Method A for each475

considered case.476

• For both the methods, the Summer period is characterized by worse per-477

formance and this is explained by the highest volatility content, as shown478

in Table 2. As expected, the Autumn period returns the best performance.479
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5.4.2. Comparison with Benchmark Methods480

Table 4 shows the performance of the proposed methods compared with the481

above described benchmarks. First, we refer to the simple quantiles extraction482

(Quantiles A and Quantiles B), where the quantiles are computed from the483

original and di↵erentiated time series respectively, as described in the introduc-484

tion of the results section. This comparison aims at showing the performance485

improving obtained by the k-mean clustering compared to the case where we486

extract the quantiles of the whole time series, without any clustering process.487

We can conclude that the k-means clustering is beneficial and leads to relevant488

performance improvement for all the analyzed cases.489

The last row of Table 4 shows the results obtained by applying the ARIMA490

model and assuming a Gaussian distribution of the point forecast error (ARIMA491

+ GAUSS). This method has to be compared with our proposed Method B since492

it requires a point forecast to compute the PIs. For 500 ms forecast horizon,493

the model is over confident with respect to the assumed normal distribution,494

returning PICP higher than 99% for ↵=95%. Thus, to allow a fair comparison495

with our method, we empirically adjust the target confidence level (and so ⌘) in496

order to obtain values of PICP similar to those given by the k-mean algorithm.497

Table 4 shows that, for the same coverage probability, Method B is characterized498

by lower PINAW.499

We refer to [13] as the only reference method for ultra-short term available500

in the literature. To allow a fair comparison, we compare Method B with the501

Dynamic Interval Predictor (DIP) coupled with the persistent point forecast,502

proposed in [13]. Indeed, the DIP needs to be coupled with a point forecast503

technique.504

From Table 5 we can conclude that the proposed method shows better per-505

formance when compared to the literature with respect to ultra-short term hori-506

zons.507
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Table 4: PICP-PINAW-CWC [%] for a time horizon of 500 ms, ↵=95%.

Season

Method Summer Autumn Winter

Method A 90.5-1.94-4.69 93.7-0.33-2.41 92.6-1.85-4.03

Quantiles A 94.6-57.4-113 93.3-29.5-62.6 95.7-35.1-35.1

Method B 97.0-0.27-0.27 96.1-0.047-0.047 98.2-0.15-0.15

Quantiles B 90.4-0.35-0.35 91.4-0.13-0.30 91.0-0.12-0.28

ARIMA+GAUSS 97.0-0.50-0.50 96.1-0.1-0.1 98.2-0.32-0.32

Table 5: PICP-PINAW-CWC [%].Performance comparison of the proposed Method B with

the Dynamic Interval Predictor, [13]. ↵=95%.

Season

Method Summer Autumn Winter

Method B 97.0-0.27-0.27 96.1-0.047-0.047 98.2-0.15-0.15

DIP 97.2-0.36-0.36 96.0-0.053-0.053 97.4-0.19-0.19

5.5. Short term forecasting508

In this section, we extend the proposed methods to higher forecast horizons509

(i.e. minutes).510

5.5.1. Exhaustive Search and Silhouette Analysis511

Tables 6 and 7 show metric CWC obtained by applying the exhaust search-512

ing, the silhouette analysis and the optimum a-posteriori, for 1 and 5 minutes513

forecast horizons. The silhouette analysis coupled with Method B shows here514

the best performance and is used for further comparison. On the contrary, when515

using the original time series, the exhaustive search performs better and should516

be used to select k and N .517
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Table 6: CWC [%] for 1 min, ↵=95%.

Season

Method Summer Autumn Winter

Optimal 21.7 8.50 22.9

Silhouette 58.0 31.6 33.0

Exhaustive Search 25.2 11.4 23.4

(a) Method A

Season

Method Summer Autumn Winter

Optimal 6.82 2.83 6.20

Silhouette 10.5 3.26 9.10

Exhaustive Search 14.0 3.81 10.3

(b) Method B

Table 7: CWC [%] for 5 min, ↵=95%.

Season

Method Summer Autumn Winter

Optimal 34.2 16.7 24.0

Silhouette 54.7 25.7 31.5

Exhaustive Search 37.9 20.7 24.0

(a) Method A

Season

Method Summer Autumn Winter

Optimal 14.2 6.62 11.2

Silhouette 17.9 6.70 14.5

Exhaustive Search 16.2 15.1 23.4

(b) Method B

5.5.2. Comparison with Benchmark Methods518

First, we present the advantage given by the k-means clustering for forecast-519

ing of 1 and 5 minutes ahead. Table 8 shows the comparison with the simple520

quantiles extraction for the original and di↵erentiated time series (Quantiles A521

and B, respectively) for 1 minute forecast horizon, as explained for the ultra-522

short term analysis. Table 9 shows the same comparison for 5 minutes time523

horizon. For Method A, we apply the exhaustive search while for B we apply524

the silhouette analysis. For all the cases, we can see an improvement coming525

from the k-means clustering with respect to the simple quantile extraction.526

The last row shows the results obtained by implementing the ARIMA model and527

assuming a Gaussian distribution of the point forecast error (ARIMA+GAUSS).528

For these forecast horizons, the PICP is slightly lower than the target confidence529
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level, with values of PINAW that are however higher than those returned by530

Method B.531

Table 8: PICP-PINAW-CWC [%] for a time horizon of 1 minute, ↵=95%.

Season

Method Summer Autumn Winter

Method A 90.1-10.2-25.2 90.8-4.81-11.4 88.8-8.87-23.4

Quantiles A 94.7-56.7- 112 93.1-29.5-61.9 95.8-34.7-34.7

Method B 96.9-10.5-10.5 97.5-3.26-3.26 97.8-9.1-9.1

Quantiles B 89.7-13.8-34.8 90.6-6.1-14.6 91.7-6.73-15.3

ARIMA+GAUSS 93.4-19.2-40.3 94.0-8.13-16.5 95.6-10.6-10.6

Table 9: PICP-PINAW-CWC [%] for a time horizon of 5 minutes, ↵=95%.

Season

Method Summer Autumn Winter

Method A 91.5-16.5-37.9 86.7-6.96-20.7 96.1-24.0-24.0

Quantiles A 94.7-55.6-110 93.1-28.5-60.6 95.8-33.7-33.7

Method B 96.7-17.9-17.9 96.2-6.70-6.70 96.1-14.5-14.5

Quantiles B 89.4-25.9-66.4 89.5-13.6-34.0 91.2-16.0-36.0

ARIMA+GAUSS 91.7-28.9-65.8 92.3-14.1-31.4 95.0-19.0-19.0

It is di�cult to compare the proposed method with results available in the532

literature due to the di↵erent GHI measurements (characterized by dissimilar533

climatology). Similar results are obtained in [21] for 5 minutes ahead GHI534

forecast, where a probability coverage of ⇡ 95% and PINAW of ⇡ 8%. In [21] a535

dataset of 1 year is considered. The percentage of periods of high volatility (i.e.536

29



with �K higher than 0.5) is ⇡ 0.3� 0.6% while in our datasets is ⇡ 0.9� 1.5%.537

5.6. From Ultra-short to Short Term Forecasts538

For sub-second time horizons, the best performance is obtained by apply-539

ing the exhaustive search coupled with Method B. On the contrary, for higher540

forecast horizons, the silhouette analysis coupled with Method B is the most541

performing one.542

For all the considered horizons, di↵erentiating the time series has a positive543

e↵ect on the final performance and allows to have a PICP higher than or equal544

to ↵. However, the improvement coming from the di↵erentiation decreases with545

increasing forecast horizons. Indeed, performance of Method A worsens less546

than those of Method B when increasing the forecast horizon.547

To complete the analysis, Fig. 11 shows our metrics as a function of the548

forecast horizon and for di↵erent confidence levels: 85%, 95%, and 99%.We549

can see that PICP (left side) is always higher or equal to the target confidence550

level. Furthermore, the value of PINAW (right side) increases with the forecast551

horizon (to account for the higher uncertainty) and increases with ↵, i.e. the552

method adapts the bound widths to guarantee the target coverage.553

Fig. 12 shows the PIs and the actual realizations obtained for 500 ms, 1 and554

5 minutes forecast horizons, respectively. Method B is applied and the target555

confidence level is 99%. A day of high variability and a clear-sky day from the556

Winter period are selected for the comparison. The corresponding values of557

PINAW are shown in Table 10, for the two days respectively, showing that the558

PIs are narrower for the clear-sky day where the variability is lower. For the559

clear-sky day at 500 ms a zoom is added since the PIs and the points are not560

easily distinguishable. We can see that larger intervals are associated to higher561

time horizons, this reflecting the higher uncertainty.562

In Fig. 13 the same days of Fig. 12 are selected and PIs are plotted for563

di↵erent confidence level (99%, 95% and 85%). It is interesting to notice that564

for the considered clear-sky day a target confidence level of 85% is enough to565

have all the measurements inside the PI.566
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Figure 11: PICP [%] and PINAW [%] are shown for the Summer, Autumn, and Winter periods

and di↵erent target confidence levels ↵.
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Figure 12: PIs and realizations are shown for di↵erent forecast horizons considering daylight

hours, ↵ = 99% and Method B is applied. Two days with di↵erent weather conditions are

selected from the Winter period.
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Table 10: PINAW [%] is shown for the two days of Fig. 12.

Day

Forecast Horizon High Volatility Clear-sky

500 ms 0.22 0.18

1 min 11.8 10.8

5 min 24.9 23.8
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Figure 13: PIs and realizations are shown for 5 minutes time horizon and di↵erent target

confidence levels, represented by di↵erent levels of shadings for the same data of Fig. 12.

5.7. Reliability diagrams567

The objective of this last analysis is to compare the target confidence levels568

with the observed ones, here represented by metric PICP.569

The analysis is for the three considered periods and three forecast horizons570

and is shown in Fig. 14. We consider Method B and the ARIMA model with571

Gaussian distribution of the error and compare their performance with the ideal572

behaviour, namely when the target confidence level is identical to the observed573

one. As it can be seen, the confidence levels obtained for Method B exhibit an574

overall good matching with the target ones, proving the capability of the method575

to provide reliable predictions. In particular, Method B is always slightly over576

confident with the exception of the Autumn period where is under confident for577

low values of ↵. The proposed benchmark method has lower reliability, it is over578
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confident for sub-second time horizons while its behaviour for higher horizons579

depends on the value of ↵. This mismatch suggests that parametric models,580

with the implicit assumption of a Gaussian distribution of the error, might not581

be suitable.582

5.8. Execution Time Statistics583

Execution times are computed adopting a Matlab 2016a implementation of584

the algorithm on an Intel Core i7-6600U CPU 2.60GHz machine. For the anal-585

ysis, we consider the worst case scenario corresponding to the highest number586

of clusters. We select it equal to 1000 that is the maximum value of clusters587

returned by the analysis at 500 ms (above this value of k we do not see any588

performance improvement). At each time step, the overall operational time re-589

quired to deliver the PI is always less than 0.5 ms. The mean and the standard590

deviation of the computational time at each time step are 0.35 ms and 1.14 ms,591

respectively. The method can be used for the real-time computation of PIs at592

sub-second time scales, and it is expected to run even faster if developed on a593

dedicated industrial platform and/or in a di↵erent programming language.594

6. Conclusions595

The problem of quantifying the uncertainty associated with solar volatility596

is investigated in this work, focusing on forecast horizons that are meaningful597

in microgrids control applications (i.e. from sub-second up to minutes).598

A simple method to deliver PIs for GHI is proposed and its performance599

assessed. The proposed technique extracts information from a limited training600

set: data are clustered o↵-line by using the well-known k-means algorithm and601

the quantiles of the obtained clusters are then used for PIs computation. The602

method does not rely on any specific point forecast technique and does not need603

any information from sky imaging.604

First, a clear-sky model is implemented. It is shown that the de-trending of605

the time-series is advantageous for time horizons higher than the minute time-606

scale, when the influence of the dynamics associated to solar position becomes607
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Figure 14: Reliability Diagrams for the three periods and forecast horizons.
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non-negligible.608

We show that the algorithm outperforms the benchmark case with simple609

quantiles extractions and the benchmark case considering the ARIMA model610

with Gaussian distribution of the point forecast error. Furthermore, perfor-611

mance is shown to be in line or improve those available in the literature, for all612

the considered forecast horizons and using a shorter and limited training set. A613

comparison with more sophisticated methods available in literature will be part614

of future work.615

The method is applied to the original and di↵erentiated clear-sky index time616

series. Results show that the benefit coming from the time series di↵erentiation617

decreases while increasing the forecast horizon.618

It is shown that the proposed method is able to adapt the widths of the PIs619

in order to guarantee the target coverage.620

Thanks to its simple formulation, computational inexpensiveness and good621

performance at di↵erent forecast horizons, the model can be useful for providing622

forecast information in the field of photovoltaic generation and in the context623

of real-time control of microgrids.624
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