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Abstract—This paper discusses linearized models of hy-
dropower plants (HPPs). First, it reviews state-of-the-art models
and discusses their non-linearities, then it proposes suitable
linearization strategies for the plant head, discharge, and turbine
torque. It is shown that neglecting the dependency of the hydroa-
coustic resistance on the discharge leads to a linear formulation
of the hydraulic circuits model. For the turbine, a numerical
linearization based on a first-order Taylor expansion is proposed.
Model performance is evaluated for a medium- and a low-head
HPP with a Francis and Kaplan turbine, respectively. Perspective
applications of these linear models are in the context of efficient
model predictive control of HPPs based on convex optimization.

Index Terms—Hydropower plants, Linear models, Model pre-
dictive control.

I. INTRODUCTION

Hydropower plants (HPPs) are a key renewable generation
asset, covering more than 10% of the electricity needs in
Europe [1]. Meanwhile, the increasing proportion of stochastic
renewable generation in the power grid causes increasing
regulation duties for conventional generation assets, including
HPPs. Excessive regulation duties are a concern for HPP oper-
ators because they lead to increased wear and tear, ultimately
shortening service life and requiring expensive maintenance.
The need to counteract these effects has been very recently
recognized in funded research projects (e.g., [2]) and addressed
in recent technical literature. E.g., work [3] has shown that
medium-head HPPs providing ancillary services incur in larger
penstock fatigue, and authors of [4] proposed a method to
reduce it. As an alternative to extending regulation duties of
HPPs, the use of batteries was proposed in so-called hybrid
HPPs to increment the regulation capacity, e.g., [5].

Conventional HPP regulation loops include the droop gover-
nors for primary frequency regulation, the speed changer for
secondary frequency control, and the turbine governor. The
governor parameters are typically tuned to deliver the design
performance (e.g., response time and droop) while respecting
the plant’s static mechanical and power limits. These classical
feedback control loops do not model dynamic mechanical
loads explicitly, so they are unaware of possible wear and
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tear effects that excessive regulation causes. Modeling the
mechanical stress is relevant not only for wear and tear but
also to design stress-informed splitting policies for the control
signal in plants with multiple controllable elements, like hybrid
HPPs.

An alternative to classical regulation loops to develop in-
formed control decisions is model predictive control (MPC),
which uses models to formulate constraints explicitly, as for
example done in [6] for battery systems using linear prediction
models of the battery voltage. In this spirit, this paper proposes
linear models of the HPP that can be implemented into an
MPC problem to formulate suitable operational constraints of
the plant. Two linear models are proposed: a guide vane-to-
torque model (key to model the plant’s power output) and a
guide vane-to-head model, which is essential to characterize
mechanical loads and fatigue. By virtue of their linearity, the
models allow for a tractable formulation of the MPC problem
through convex optimization. These models contribute to ad-
vancing the state-of-the-art because typical HPP models for
control applications are non-linear transfer-function models
(e.g., [7]).

The rest of this paper is organized as follows: Section II
describes HPP models, Section III describes the proposed
linearization procedures, Section IV the methods for the
performance evaluation, Section V presents the results and
Section VI draws the main conclusions.

II. MODELLING HYDROPOWER PLANTS

From a modelling perspective, HPPs feature two main
components: hydraulic circuits and turbine, as described next.

A. Hydraulic circuits

The hydraulic circuit of an HPP consists of the low-pressure
tunnel, the penstock, and, in medium- and high-head plants,
surge tanks. The penstock is the key element for dynamics
because it is subject to the elastic behavior of the water. Its
model is described next. The model of the surge tank can
be derived by applying the same equivalent circuit principles
described here and is not addressed in this paper for a reason
of space. The penstock is a pipe that guides water running
from upstream to the hydraulic turbine. The water’s potential
difference between the penstock’s inlet and outlet is the source
for the mechanical power. The penstock is not open to the978-1-6654-4875-8/21/$31.00 ©2021 IEEE



air and is subject to water pressure. For this reason, water
elasticity is accounted for in its model. Assuming that the
penstock is significantly longer than larger, it can be modeled
with a one-dimensional approach using partial differential
equations (PDEs), e.g., [8]. PDEs are solved numerically by
discretizing the penstock (Fig. 1) into a finite number of
elements, n, of length dx = l/n, where l is the total length
of the penstock.

Control volume "i"

Node
i i+1

dx

x+

dx dx/2

n+1n

Boundary condition:
h      = cste 

n+1

dxdx/2

1 2

Boundary condition:
h   = cste 1

Fig. 1. Spatial discretization of a pipe of length L [8].

This model can be conveniently visualized and solved in
terms of its equivalent circuit model, where each element in
Fig. 1 correspond to a (nonlinear) RLC circuit. The relation-
ship between the discharge Qi of each penstock element i and
its head hi is:

dQi
dt

= −R(Qi)

L
·Qi −

2

L
· hi+1/2 +

2

L
· hi (1a)

dQi+1

dt
= −R(Qi)

L
·Qi+1 +

2

L
· hi+1/2 −

2

L
· hi+1 (1b)

dhi+1/2

dt
=

1

C
· (Qi −Qi+1). (1c)

where the circuit parameters are

R(Qi) =
λ · |Qi| · dx
2g ·D ·A2

, L =
dx

g ·A, C =
g ·A · dx

a2
, (1d)

with λ as the Darcy-Weisbach friction coefficient, g accelera-
tion of gravity, A pipe cross-section, D pipe diameter, and a
the wave speed in meters per second (m/s).

The equivalent circuit of a 1-element penstock model is
shown in Fig. 3(b) and will be discussed later in combination
with the turbine model. The number of penstock elements n is
chosen as a trade-off between computational complexity and
modeling accuracy.

B. Hydraulic turbines
For dynamic power grid simulations, hydraulic turbines are

typically modelled using the “quasi-static” approach, which
assumes that the behavior of the hydraulic machines can be
simulated as a succession of different steady-state conditions
during the transition between different operating points [9].
This approach, which preserves acceptable accuracy levels to
model dynamic interactions with the power grid and is compu-
tationally tractable [8], consists in using characteristic curves,
typically determined experimentally, to link all operational
variables of a turbine, namely its torque Tt, rotational speed N ,
head Ht, and flow Qt. The characteristic curves are formulated
in terms of the so-called unit variables:

N11 =
N ·Dn√

Ht

, Q11 =
Qt

D2
n

√
Ht

, T11 =
Tt

D2
nHt

(2)

where Dn is the diameter of the turbine. There are two
characteristic curves, one for express the discharge factor Q11,
and the other for the torque factor T11. Both are a function of
the speed factor N11 and the controllable inputs, which are, for
Francis turbines, the guide vane y, and, for Kaplan turbines,
the guide vane y and the blade pitch β.

1) Francis turbine: As characteristic curves have typically
an ”S” shape, a change of variables is typically performed to
avoid numerical issues [10]. This consists in defining a polar
angle

θ(Qt, Nt) = arctan

(
Q11/Q

′
11

N11/N ′
11

)
= arctan

(
Qt
Nt

)
, (3a)

and two new functions of θ and guide vane y defined as

WH (θ, y) =
Ht/H

′
t

(Qt/Q′
t)

2
+ (N/N ′)

2 (3b)

WB (θ, y) =
Tt/Tn

(Qt/Q′
t)

2
+ (N/N ′)

2 , (3c)

where ′ quantities are values at the best efficiency point. An
example of these transformed characteristic curves are shown
in Fig. 2 and are the basis to derive the numerical first-order
approximations for the linearized models.
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Fig. 2. Polar representation of a Francis characteristic curves [8].

2) Kaplan turbine: Kaplan turbines feature a double con-
trol system comprising the guide vanes and mobile blades.
Compared to the Francis turbine discussed above, their charac-
teristic curves WH(·),WB(·) are a function of the pitch angle
β, too.

C. Complete plant model

The models of the hydraulic circuit and turbine can be
combined in an equivalent circuit model [11], as shown in
Fig. 3(b), where the RLC circuit refers to the (1-element)
penstock and the variable voltage source Ht to the turbine1,
modelled with (3b). The inertia of the water and the no-
discharge condition at guide vane full closure can be modelled
with an equivalent inductance and a resistance in series to the
turbine model, respectively [12] - not shown in Fig. 3 for a
reason of space. It is convenient to write the equivalent circuit
model in its state-space form to visualize all the involved
quantities. The (augmented) state-space model also includes

1In equivalent circuit models, voltages are analogous to pressures (or heads),
and electric currents to the water flow.
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Fig. 3. Equivalent model of hydraulic circuits (with a 1-element penstock)
and turbine.

the rotational speed of the machine from Newton’s second
law for rotation. From the circuit with the 1-element penstock
and Francis turbine of Fig. 3(b), the state vector is:

x =
[
Q1 Qt h1+1/2 ω

]>
(4a)

where Q1 is the water flow in the penstock’s first element, Qt
is the turbine discharge, and ω the turbine angular velocity.
The input vector is:

u(Qt, N, y) =

 Hr

Ht(Qt, N, y)−Hd

Tt(Qt, N, y)− Tel

 (4b)

where Hr is the reservoir head, Hd the downstream head, Tel
the electrical torque of the generator, Ht and Tel the turbine
head and hydraulic torque from the characteristic curves in
(3), and > denotes transpose. They both depend on the state
components Qt and Nt, and guide vane opening y. The
(nonlinear) state-space model is:

ẋ = A(Qi)x+Bu(Qt, N, y). (4c)

The state and input transformation matrices are:

A(x) =


R(Q1)
L 0 − 2

L 0

0 R(Qt)
L

2
L 0

1
C − 1

C 0 0
0 0 0 0

 , B =


2
L 0 0
0 − 2

L 0
0 0 0
0 0 1

J


(4d)

where J is the turbine inertia. A depends on the flow in the
penstock and turbine discharge because of the dependency of
the hydroacoustic resistance (1d) on the flow.

When the penstock is modelled with n elements, the state
vector has (2n+ 2) elements (i.e., n+ 1 discharges, n heads,
and 1 rotational speed). The model for the Kaplan turbine
includes the dependency of Ht and Tt on blade angle β.

III. LINEAR MODELS

The state-space model in (4) is non-linear in the state and
in the controllable input, namely y for the Francis turbine,
and y and β for the Kaplan. We discuss in this section
suitable methods and approximations to derive linearized
models, whose performance are then investigated in the results
section. The first non-linearity is the dependency between the
hydroacoustic resistance R and the discharge Q in (1d). By
assuming small variations of the operating point (and thus of
the discharge), R can be approximated as a constant value,
finally leading to a linear and time-invariant formulation of

the penstock model. The second non-linearity is the turbine’s
characteristic curves. As turbine models are derived from
experimental measurements, a closed-form linearization is not
possible, thus we proceed with a numerical linearization of the
characteristic curves based on a first-order Taylor expansion,
as discussed next.

A. Linear model of a Francis turbine

A relation between the head, denoted by Ht(Qt, N, y),
and the numerical characteristic curve Wh(·) is obtained by
inverting (3b). The procedure for the torque, not illustrated
here, is analogue but considering (3c).

The first-order Taylor expansion of Ht(Qt, N, y), denoted
by H̃t(·), around an operating point with discharge Qt0 ,
rotational speed N0, and guidevane opening y0 reads as:

H̃t(Qt, N, y) ≈ Ht(Qt0 , N0, y0) + dHQ · (Qt −Qt0)+

+ dHN · (N −N0) + dHy · (y − y0).
(5)

where dHQ , d
H
Q , d

H
N are partial derivatives of Ht(Qt, N, y)

calculated in the operating point. They are computed by
differentiating numerically as:

dHQ :=
∂Ht

∂Qt

∣∣∣∣
Qt0

=
Ht(Qt0 + ε, ·)−Ht(Qt0 − ε, ·)

2 · ε , (6a)

dHN :=
∂Ht

∂N

∣∣∣∣
N0

=
Ht(N0 + ε, ·)−Ht(N0 − ε, ·)

2 · ε , (6b)

dHy :=
∂Ht

∂y

∣∣∣∣
y0

=
Ht(y0 + ε, ·)−Ht(y0 − ε, ·)

2 · ε , (6c)

where ε is an arbitrary (small) parameter and (·) denote the
remaining function arguments, kept constant.

B. Linearized state-space model

The state-dependant matrix A(x) in (10d) is calculated for
the operating point Q10 and Qt0 , thus resulting in a linear
and time-invariant transformation of the state. The next step is
expanding the linear models for the turbine head (and torque)
in the input vector u(·) of (10b). The turbine head appears in
the second element of the input vector u; by using (5), it can
be re-written as:

Ht(Qt, N, y) ≈
[
dHQ dHN

]
Mx+ dHy y + cH (7a)

where M is a 2×(2·n+2) matrix such that Mx =
[
Qt N

]>
,

and cH collects all the known terms of the expression

cH = Ht(Qt0 , N0, y0)− dHQQt0 − dHNN0 − dHy y0 (7b)

Similarly, the turbine torque, appearing in the third term of
the input vector u(·) in (10b), can be written as:

Tt(Qt, N, y) ≈
[
dTQ dTN

]
Mx+ dTy y + cT (8a)

cT = Tt(Qt0 , N0, y0)− dTQQt0 − dTNN0 − dTy y0. (8b)



By replacing (7) and (8) in (10b), the state-space in (4c)
can be written as:

ẋ = Ax+B1Hr+

+B2 ·
([
dHQ dHN

]
Mx+ dHy y + cH −Hd

)
+

+B3 ·
([
dTQ dTN

]
Mx+ dTy y + cT − Tel

)
.

(9)

where B1, B2 and B3 are respectively the first, second and
third columns of matrix B in (10d). Eq. (9) can be now written
as the following linear state-space

ẋ = Ãx+ B̃ũ (10a)

where:

ũ =
[
Hr y (cH −Hd) (cT − Tel)

]>
(10b)

Ã = A+B2

[
dHQ dHN

]
M +B3

[
dTQ dTN

]
M (10c)

B̃ =
[
B1 (B2 · dHy +B3 · dTy ) B2 B3

]
. (10d)

The state evolution in (10a) is now a linear function of the
state and the controllable input, namely the guide vane y. The
input vector (10b) contains, in addition to y, the reservoir head,
the downstream head, electrical torque (these three are input
parameters), and constant coefficients cH and cT that depend
on the linearization.

C. The case of Kaplan turbines

As discussed in Section II-B2, Kaplan turbines can adjust
the blade pitch, β, too. The linearization is performed similarly
to the Francis turbine, with an additional partial derivative for
β. The linear state-space system for the Kaplan, ũ′, Ã′, B̃′, is

ũ′ =
[
Hr y β (c′H −Hd) (c′T − Tel)

]>
(11a)

Ã′ = Ã (11b)

B̃′ =
[
B1 (B2d

H
y +B3d

T
y ) (B2d

H
β +B3d

T
β ) B3

]
(11c)

where the known terms contain also the linearazition point of
the blade pitch β0:

c′H = cH − dHβ β0 and c′T = cT − dTβ β0. (11d)

IV. METHODS FOR PERFORMANCE EVALUATION

A. Case studies

We consider two HPPs of different kind. The first is 87 MW
medium-head plant with a Francis turbine. It has a 500 meters
penstock and a net head (i.e., Hr − Hd) of 90 meters. The
penstock is discretized with n = 20 elements. The second HPP
is 39 MW Kaplan low-head unit with a net head of 15m. The
short penstock and spiral case is modelled with 8 components.

B. Procedure to compute the estimation performance

The estimation performance of the linear models is eval-
uated in time domain simulations by comparing their output
against the non-linear models. The procedure to compute the
estimation performance is the following:

(Step 1) a linear model is computed for each given op-
erating point. The operating point is specified by the guide

vane opening, net head, and rotational speed. Nine different
operational points are considered, given by varying the guide
vane from 0.2 pu to 1 pu (0 pu and 1 pu represent respectively
the all close and all open position), representing the typical
operating range of a power plant, with increments of 0.1 pu.
The net-head is assumed constant at its nominal value, and the
rotational speed at 50 Hz to represent steady-state synchronous
operations. For the low-head HPP with Kaplan turbine (that
features two regulation mechanisms, guide vane and blade
bitch), the pitch is chosen as a function of the guide vane
according to the on-cam curve;

(Step 2) each linear model is used to simulate operations for
a stepwise change of the guide vane. We consider 20 different
stepwise changes, from -0.5 pu to 0.5 pu, with increments of
0.025 pu. All the combinations resulting in unfeasible guide
vane openings (e.g., guide vane 0.2 and stepwise change of
0.5) are excluded. In this way, a total of 41 x 9 (minus
the unfeasible combinations) simulations are performed. For
the Kaplan turbine, each guide vane deviation determines a
deviation of blade angle according to the on-cam curve.

(Step 3) for each simulation, the estimation error is cal-
culated as the difference between the linear model and the
ground-truth model.

We analyze estimates of the the turbine torque (relevant in
the context of characterizing the mechanical and electric power
of the plant) and the spatially averaged head in the penstock
for the medium-head HPP, and the head at the turbine for the
low-head plant (relevant to asses mechanical load levels, and
fatigue, of HPPs).

C. Performance metrics and notation

We formalize the notions explained in the former section
with the objective of defining the metrics. Let Ψ denote the
set with all linearized models of the low-head (or medium-
head) HPP, and ψ ∈ Ψ a single linearized model. Let set X
denote all possible combinations of linearization points and
deviations of guide vane performed in the experiments, where
χ ∈ X is a single experiment; ŷT (t, ψ, χ) is a time series that
contains the turbine torque of the time-domain simulation of
linear model ψ for experiment χ; yT (t, χ) is the ground-truth
time series from the non-linear model for the same experiment.
The torque error of linear model ψ in experiment χ is:

eT (t, ψ, χ) =
yT (t, χ)− ŷT (t, ψ, χ)

Tn
(12)

where Tn is the nominal torque. The torque estimation perfor-
mance is evaluated in terms of the mean absolute error (MAE)
of the error e:

MAE =

t=tf∑
t=t0

|e(t, ψ, χ)| (13)

where the initial and ending time intervals (t0, tf ) are chosen
to either capture transient or steady-state conditions. For tran-
sient conditions, t0 corresponds to when the step-wise change
is applied and tf = t0 + 350 s, where 350 s is determined
by empirically by evaluating steady-state conditions (ẋ ≈ 0).



For steady-state conditions, t0 and tf are set to a fixed time
interval that correspond to when the system is in steady-state.
Head estimations are computed and characterized with the
same procedure, scaling the error by the nominal head Hn.

V. RESULTS

A. Medium-head plant with Francis turbine

(a)

(b)
Fig. 4. Francis medium-head HPP, turbine torque: MAE of the linear
estimations in transient (a) and steady-state (b).

Figures 4 and 5 show the transient and steady-state MAE
of the torque and head, respectively for the medium-head HPP
with Kaplan. The main considerations that can be derived are
discussed in the following findings.

Finding 1: Linear estimates are more reliable for the head
than for the torque. This is due to more prominent non-
linearities in the torque model.

Finding 2: For a given guide vane opening, estimation
performance worsens with larger step-wise variations of the
guide vane. This result is to be expected because the linear
models are first-order approximations of the nonlinear models;
thus, small deviations from the linearization point imply better
local approximation.

Finding 3: Linear head estimates are better in steady-state
(with a maximum error of 1%) than in transient conditions
(maximum error: 10%). For the torque, performance is similar
in both cases.

(a)

(b)
Fig. 5. Francis medium-head HPP, spatially averaged head in the penstock:
MAE of the linear estimations in transient (a) and steady-state (b).

Finding 4: For variations of the guide vane smaller than
0.1 pu, torque estimation errors are less than 10% (except for
guide vane 0.7 and less than 0.4), and head estimation errors
less than 1%.

In the light of Finding 4, it can be concluded that the
use of linear models is justified in small-signal applications
and where these error levels are acceptable; the advantage
is handling computationally tractable models that can be
implemented in, for example, (convex) optimization problems
for optimal decision-making.

B. Low-head plant with Kaplan turbine

Transient and steady-state performance of torque and head
estimations is respectively shown in figures 6 and 7. Similar
observations as for the medium-head HPP can be drawn. In
particular: (Finding 1) Linear estimations of the head are more
accurate than for torque; (Finding 2) Smaller deviations of
stepwise changes result in smaller estimations errors; (Finding
3) head estimates at steady state are significantly more reliable
(errors less than 0.1%) than during transients (errors less than
30%). For the torque, there is no significant difference between
the two cases; (Finding 4) for small signal variations (e.g.,
±0.1 pu of the guidavane), torque errors are approximately
within a 10% band, and head errors within 0.8%, thus denoting



relatively small errors of the linear models when used in small-
signal applications.

(a)

(b)
Fig. 6. Kaplan low-head HPP, turbine torque: MAE of the linear estimations
in transient (a) and steady-state (b).

VI. CONCLUSIONS

This paper presented linearized models of hydropower
plants and discussed their performance. The main sources of
nonlinearities in both the hydraulic circuit and turbine models
were illustrated, and linearization strategies were discussed.
Estimation performance was investigated for both medium-
and low-head HPPs with Francis and a Kaplan turbine, re-
spectively. Results showed that i) linear estimates of the head
are more reliable than for the torque; ii) for variations of
the controllable input in a ±0.1 pu range, the relative mean
absolute error of the linear estimates are less than 10% for
the torque and less than 1% for the head. In small signal
applications where these error levels are considered acceptable,
the linear models are a more tractable alternative to non-linear,
opening to the development of efficient model predictive
control based on convex optimization.
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