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Abstract—With future increasing of electric energy production is a convenient form of control since the decision is comgute
from fluctuating sources, the need for regulating power willrise  |ocally while in the case of direct control the information
and conventional power plants - that today provide all power a1 conditions for example) should be propagated froohea

system ancillary services - could not have the capability ach devices up to some aggregator which should send a control
the flexibility of providing it. Demand Side Resource, DSR p ggreg

are electric loads whose power consumption can be shlfted signal to drive each of them. The critical part of a contrgi-b
without having a big impact on the primary services they are price approach is the price signal itself because, for privdu

supplying and they are suitable for being controlled accorthg it, the response of the distributed demand side resourcesdsh
the needs of regulating power in the electric power systemnlthis be known since it is required in the market process[4]. In

paper the performances and the aggregate responses providiey . L .
three algorithms for controlling electric space heating tliough [ 1EXPOWer project, the aim is to use control by price appoac

a broadcasted price signal are compared. The algorithms have for supporting the amount of regulating power needed by the
been tested in a software platform with a population of buildngs power system [5].

using a hardware-in-the-loop approach that allows to feedback |n this paper the performances of three algorithms withepric
into the simulation the thermal response of a real office buding;  responsiveness capability for controlling domestic elect
the experimental results of using a model predictive contriber - . .
for heating a real building in a variable price context are also space heating through a broadca.Sted price signal are_cempar
presented. The proposed algorithms have different level of requiretsien
This study is part of the Flexpower project whose aim is two of them work basing their decision on historical data of
investigating the possibility of creating an electric marlet for  the price signal; the third one is a model predictive cotgrol
regulating power with a big participation of DSRs and small - (\1pc) and it uses both prices and real weather forecast.
scale generation units. . . . . . e s e
In this comparison, the price signal is artificial and it islu
Index Terms—control by price, Demand Side Resources, Smart \jith the aim of highlighting the pros and cons of each control
grids. algorithm. The algorithms have been compared adopting both
a final user point of view, evaluating the deviation from the
l. INTRODUCTION optimal comfort level (the indoor temperature set-pointhiis
Demand side resources, or DSRs, are electric loads tbase) and the total cost for the energy used, and the power
provide services that are naturally coupled to some kirmystem one; from the power system perspective, it would be
of storage; this allows to control, schedule or shift theinseful having a devices with a good price responsiveness ca-
power consumption without having a big direct impact opability, able to reduce or to decrease the power consumptio
the quality of the primary services they are providing to thsteadily for a long time and predictable in the behavior.
users. Examples of demand side resources are space or wat€he control algorithms have been tested using a Java
heating, electric vehicles or also fully deferrable loaattsu simulation platform with a population of houses. For intro-
as washers or dishwashers. Because of their flexibility, ®§SRucing more realism into the simulation,hardware-in-the-
are suitable to be controlled in order to contribute to powésop approach has been used: the thermal dynamics of a real
system services with respect to their constraints, phlsidaiilding have been introduced in the simulation and they are
limits and local settings [1]. DERs exploitation is basedio® used for perturbing in real time the behaviors of all the lesus
consideration that the contribution from the single ungrsall inside the population.
but the aggregate response of a big number of devices mighDetailed descriptions about the simulation platform, the
be relevant. Demand side resources can be directly cagdrolhardware in the loop feedback, the thermal models, the abntr
(for example by a power reference signal), they can reactatgorithms and how their performances have been compared
order to response to a deviation of the grid frequency oma ti are given in Section Il.
shift in their electric power usage can be achieved usingcgpr  Section Ill is for presenting and discussing the resulthef t
signal for the electric energy [2][3]: this economic indeat simulations: both the aggregate response of the populafion
should induce the demand side user to consume more poweildings and the experimental result of the model predicti
when the energy is cheap (and in the case to store it) andctmtroller applied on a real house are reported. A compari-
reduce the consumption when the price for the energy is higlen of the performances obtained with the different control
Users response to price signal is spontaneous and basedilgorithms is then presented.
local comfort or operational preferences. Using price aign  Section IV is for conclusions.



service; the weather forecast is used both by the model pre-
dictive controller and for evolving the state of thermal ratsd
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000000 Forecast is released every day and with a time resolution of
000000000 . - . -
000000000 one hour: smaller time steps are required for computing the
B W 000000000 models evolution so the same resolution of the price signal,
' ' five minutes, is achieved simply using linear interpolation
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v y ' are not used by the implemented control algorithms because

, i it would not be realistic in an future diffusion of the coritro
Control ALGS Cz ] |_| Y by price since it would increase the complexity and cost of

Fi the system for the many sensors to add around.
Flexhouse

Fig. 1. The experimental setup used for the proposed simntatwith A. Thermal models

the FlexHouse building as theardware-in-the-loop for reproducing the real Ref 8 t i th | dels f
environmental conditions. Weather forecdd} and the pricep; signal are eterence [ ] present several linear thermal models tor

used. FlexHouse. They are reported in increasing order of complex
ity (states number) and they are built using a grey-box ap-
proach where the parameters are computed using a maximum
[I. METHODS likelihood estimator with real measurements from FlexHous

The software tool used for performing the simulations iEhe one selected for this implementation is the simplest one
a Java based dynamic simulator which allows to implemeftl-State linear model. This model is used both for desaibin
generic models and control algorithms. The simulation-pldt'€xHouse dynamics and the population of buildings; fos thi
form allows for simulating a large number of units and fol2St PUrpose, the parameters of the model have been slightly
having different controllers implemented concurrentliie t varied f_ollowmg a_nor_mal distribution for taklng _|nto aaouat
functionalities of the simulation platform have been imetgd SmMall differences in size and thermal conductivity feasure
with the distributed power system facility SYSLAB[6] in eed 1 he Population of the buildings is composed by four iden-
to perform a real time hardware in the loop simulation intrdic@l groups of fifty houses each. Each group of buildings is
ducing the thermal dynamics of a real building, FlexHougdiven by a different type of controller (presented latemyla
[7]. FlexHouse is a small office building which is heated b§}1e temperature evolut|_on of e_:ach model is perturbed at each
ten 1kW electric heaters that can be controlled. step by the measured input discussed before. .

The diagram of the simulation scenario is shown in Figure 1, FOr @ better description of the thermal behavior of a
The box with the small gray circles represents the popuiatigu”d'ng’ a wo states model_ could be used _fo_r representing
of houses that is implemented in the simulator. The distfe transients both (_)f the air and of the building envelope._
bation signalAT;, which is obtained comparing the indoor! € réason why a simpler 1-state model has been chosen is
temperature of FlexHouse with its model implemented in 82t FlexHouse only disposes of the indoor air temperature
simulator, perturbs the behavior of all the simulated bogg Nformation so this is the only measure available for ifiiag
in order to reproduce the effect of the real environment afid® model (a state estimator could be considered in the case
operating conditions (uncertainties in the modeling and (f linear models W_'th larger or_der). The hardV\_/are in the
weather forecast). Of course environmental local contitio/0°P @pproach provides to the simulated population of house

like wind, outside temperature and solar radiation, act Ah even more realistic footprint to the thermal transient.
FlexHouse The problem still remains for the MPC, where the 1-state

The output of each implemented control algorithm is model could not_give a g_ood prediction on the future ind_oor
signal that drives the electric heaters. In the case of Foexsd, temperature during transient (the steady state resportse is

the same control signal is applied both to the real buildir@‘me) resulting in a worse performance of the controller.

and to the model inside the simulation platform in order to
compare the real behavior with the simulated one. B. Control algorithms

The output of the simulation is the temperature profile and The control algorithms for whom the performance is com-
the power usage of each building: the sum of them gives tpared have different levels of complexity and requirements
aggregate electric power consumption. Also the experigdent The simplest one is the traditional thermostatic controlle
data regarding FlexHouse activity are made available by thad it has been included mainly for having a comparison with
simulation platform. the current situation.

In this experimental setup, the price sigmalis simulated  The second algorithm is a simple extension of the traditiona
and it is built for trying to demonstrate which algorithmhermostat where a price response capability has been added
performs better within this framework. In accordance witin the temperature hysteresis cycle, the controller camsho
Flexpower project, the price for the electric energy is upda to switch on the heating for storing thermal energy if the
every five minutes. proposed price for the electric energy is cheaper than thespr

Weather forecastV; for the area is delivered by a FTPpaid in average (in the past) or otherwise to shutdown it.



The third control algorithm is proposed by [9] and [10] 10 50

again, the decision process is based upon consideratiahg or 8 40

historical prices. At each timg when a new price for electric 6 30

energy arrives, the temperature set-point for the theratiost § . % .

controller is modified from the optimal one using the quantit

AT; defined in the Equation 1: 2 10
AE — _k_ﬁz (1) 0 20 22T[0C]24 26 0 0 2 3[kw(i 8 10
p; = Pi— P (2) Fig. 2. The weighting functions used in the cost expressiothe MPC.

O
where p;, p; and o; in Equation 2 are respectively the
current price, the moving average and standard deviationtBg different algorithms. The following three indicatoravie
the price history for the last 24 hours. Coefficiehtis a been evaluated.
positive constant and sets the price responsiveness tiapabi 1) temperature comfort penalty function: it is computed as
of the controllerp; is calledrelative price. The result achieved the integral in time of the aboslute value of the temperature
by this controller is to produce a temperature deviativhi deviationAT" from the set-point (chosen @3°C' for all the
proportional to the relative price and in general it is nagat Population of simulated buildings and FlexHouse). States o
when the price is greater than the average of the old ones:usisler-temperature have been weighte# times more than
the new temperature set-point will be smaller than the previ Over-temperature conditions; a second temperature penalt
one and vice-versa. function is considered and it is the integral in time of the
The fourth and last controller uses a thermal model fdgmperature deviation when it is out of the admissible comfo
computing the future temperature states of the house andnierval (defined ag3 4 3°C).
minimizes a cost expression in the form of Equation 3 with 2) total cost of energy: it is simply the integral in time
finding an appropriate heating power profile; the target ef tt¢f the electric power used for heating multiplied by the ric
algorithm is to reduce future deviations from the temperatusignal;
set-point paying as little as possible for the electric gger ~ 3) Price responsiveness capability: it is defined as the
variation of heating power produced by a control algorithm
ty . k .. K .
J = kyq(T(ty)) +/ kaq(T(8)) + r(u(®))p(t) dt  (3) with respect to price variation that iP/dp with P power
0 consumption.
The symbolsT' and u, both time dependent, are for indoor The first two indicators take into account the user comfort
temperature and heating power respectively. The intematiand economic benefit, _whiI(_e the_ Ia_st one is important from
interval starts from the current instart, until the length of POWer system perspective since it gives a measurement of the
optimization horizont;. The functionsq(T) and r(u) are control capability that each algorithm adds, in this case, t
numerical weighting barrier functions that assume higluesl domestic electric heating. The second indicator, the tat
when the independent variable approaches non admissii9ethe energy, gives also a measurement of the capability of
values. Their shape is shown in Figure 2. Funcfiof is the the algorithm to move electric power consumption in insgtant
price signal that, multiplied by the electric power used hg t Of time with lower energy prices.
heaters and integrated in time, gives a energy cost. Sirece th )
integral looks ahead in timg{t) is a price forecast series. As 1he number of on-off cycles produced by the algorithms
said before, the price signal is artificial and, in this apoig has not been take into account in this analysis; anyway this
it is assumed to know the price forecast without error. TH& & relevant aspect if electromechanical devices for pioger
factor k, determines the price responsiveness capability Bgaters are used, since their life is heavily affected by the
the controller. The goal of the optimization process is figdi "umber of switching cycles.
the optimal control lawu®(t) that is able to minimize the
cost expression/ of Equation 3. For finding the minimizing Ill. RESULTS AND DISCUSSION
control w°(t), a numeric algorithm based on the gradient As introduced before, the simulation here presented is
descent method[11] has been used and it is applied each tioheained applying the heating power setting computed by the
a new price for the electric energy is released (five minutegyedictive controller to both a real building (FlexHous&da
The indoor temperaturd’ should be treated as stochastiits model. The difference between the two responses is then
variable but in this approach the problem formulation ig letised for perturbing the state of all the other buildingsdasi
deterministic since the receding horizon configuratiomdmsi a real time simulation, where the behavior of 200 houses
a natural feedback into the system because the algoritifdivided in four identical groups of 50 buildings with each
retrieves a new indoor temperature reading every five minutgroup driven by one of the four algorithms discussed before)
together with the price signal and weather forecast. A similis reproduced. The temperature set-point for all the bugjdiis
approach for a MPC but using linear programming is in [12)3°C and the allowed offset i-3°C. An artificial new price
and [13]. is broadcasted every five minutes together with real weather
Both end user and power system point of views have bemecast. The price signal is a sine wave with decreasing
taken into account in the comparison of the performancesfoéquency. Plots in Figure 3 and 4 are split in two parts for
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Fig. 3. The experimental data from FlexHouse with the modebistive Fig. 4. A comparison of the output of the four different cofirs. The

controller. Plota shows the heating powes, is the indoor temperature ad two plots are consecutive and with different time scale.aDat the plotb

is the artificial price signal. have been filtered with a low pass filter for a better visugiiraof the main
frequency components.

convenience of visualization; the former part is for thehhig

frequency components of the price signal, the latter islier tthermal inertia is not enough for both being able respond to
consecutive rest of time where price signal presents slowaew price variation and maintaining the indoor tempemtur
variations. The optimization horizon length of the preifiet in an acceptable comfort level.

controller is five hours and it has been chosen according thé~igure 5 shows the average temperature profiles for the four
thermal time constant of FlexHouse; as said before, MPC ushfierent groups of buildings. Platshows the instant deviation
real weather forecast and the price signal forecast is sggpofrom the indoor temperature set-poir#3¢C’). Plot b shows

known without error. the accumulated error computed as the integral of the atesolu
Time ¢t = 0 in the plots refers to 18:16 pm of October thevalue of the deviation, where the states of under tempegatur
13?2011 and the simulation lasts for 5.2 days. have been weighte2ZD% more than states of over temperature.

Since the price signal is artificial and it was created fdelotc shows the accumulated absolute value of the error when
enabling the comparison between algorithms, its unit of-methe temperature is not in the admissible ragget 3°C. Plot
sure on the plots is not specified and it is intended as a gendrishows that the thermostatic controller is the more precise
monetary value for unit of energy. in keeping the temperature close to the optimal set-polot; p

The firsts plots in Figure 3 show the experimental resultsshows that the model predictive controller is the one that
of the application of the model predictive controller tole performs best in keeping the temperature of the buildings in
House. The attempt of the controller to move the electribe defined acceptable range. It is worth to notice the behavi
energy consumption when the price is low is visible. With thef the two thermostatic based controllers (black and green
decreasing of the frequency of the price signal, the cdetrol profiles): in fact they always should be able to maintain the
starts to lose the capability of shifting the energy usagd atemperature in the thermostatic interval but, in the daythef
the power is dictated by the indoor temperature because gimulation, the weather was cold (7f12) and sunny in the
house does not have enough thermal inertia to maintain tBepenhagen area and during the day hours the sun was able
indoor temperature in a acceptable range. to warm the buildings in a significative way and more than

Figure 4 shows the aggregate response of the four differéimé allowed range. This explain why the thermostatic based
groups of buildings; each of them is driven by a differentontrollers have this accumulated error different thamozer
controller according to the plot legendstays for thermostatic this case the model predictive controller takes advantdge o
controller,tsp is for second algorithm discussed in Section lithe weather forecast and it is able to perform even better tha
cet is the third andpc is the model predictive controller. Thethem. The control algorithm that corresponds to the blue lin
data in the bottom graph have been elaborated with a lal@ees not show a good performance in pidiecause the way
pass filter for a better visualization. As Figure 4 shows, ttibe temperature offset is computed (Equation 1) can easily |
output produced by each controller with price responsisendgo temperature references quite different from the realels
capability is very different from the green area that is theptimal one.
thermostat action; this means that they are all exploiting Figure 6 shows the cost of the energy for the different
the flexibility offered by the price signal but in differentcontrol algorithms. Plot is the instant energy bill and pldt
ways. Again, with the increasing of the period of the priceepresents the average on the population amount of money
signal, all the controllers tend to show a behavior more anidat the final user would save (in a variable price context
more similar to the thermostatic controller action becahse of course) applying the different algorithms with respext t
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Fig. 5. Plota shows the temperature deviation from the set-pdifif C) for ~ Fig. 6. Plota shows the instant values of the electric bill. Ploshows the
the different algorithms. Plai is the accumulated error (with states of undemoney saved with respect to the traditional thermostati@rotier in a price
temperature have been weighted 1.2 times more). ®lstthe accumulated signal context.

error for the temperature deviation from the comfort arest th23 + 3°C.

positive variation of the price and vice-versa; as the flaegr

using traditional thermostatic controller. Plots in Figué lines shows, the thermostatic controller does not offecepri
show that the model predictive controller is the algorithmesponsiveness at all. The algorithms that show the bes pri
that performs best together with the very simple modifiegsponsiveness capabilities are the model predictive aitert
thermostatic controller. It is worth to notice that, despitand the one nameckt.
weather forecast are real, the price signal is assumed knowith computing the average of the standard deviation of the
and so in the case of the energy bill the performance of thepulations along the x-axis, it is possible to get an idea
model predictive controller could be worse if wrong foréca®f which algorithm would result in the best predictabilitj o
are provided. Anyway, with good price forecast the MP@he price response for this simulation: the controller wiith
controller is the algorithm supposed to still give the besuit less standard deviation t, thentsp and finally the model
because it is the only one that, using forecasts, takes tafyan predictive controller.
of looking into the future for a better utilisation of the theal An interesting point of the price responsiveness of Figure 7
energy stored in the buildings. So, for example, if the pride to see if increasing the number of buildings of one order
forecast are indicating an increment in the future enerigepr of magnitude could improve its shape in the sense of having
MPC algorithm is the only one that is able to start to storgmaller values for the standard deviations and, so, initrgas
thermal energy at some point (with switching the heating otf)e predictability of the behaviors of the buildings; intfteese
in order to avoid to pay more money for the same energyrves could be used for estimating the prediction of power
amount later. usage variation given a electric energy price and they cbeld

Figure 7 shows the price responsiveness for the proposesgd for bidding in the electric market for computing a price
algorithms. Price responsiveness is definedf;’ésthat is the signal.
variation of electric power usage achieved by an algorithm
given a certain variation of the price of the energy. Each IV. CONCLUSION
point on the plot is the mean of a distribution of values In this paper the performances of three different algorgthm
that are the different responses that the algorithm gives doitable for controlling domestic electric space heatimgugh
such variation of price. The standard deviatienfor each price signal are compared. Control algorithms have been
distribution is reported on each mean value with the vdrticeompared analyzing the aggregate response of a population
bar on the plot: how the bars show, the aggregate respon$éuildings inside a simulation platform usinghardware-
is not really predictable and may vary in a very significativin-the-loop approach: a temperature feedback signal from a
way because it is function of a wide number of parametergal office building perturbs in real time the behaviors of
such as time, outside temperature, wind speed, solar i@liatall the buildings simulated in the platform in order to take
thermal features of the buildings, thermal history and so oimto account environmental uncertainties and so preteng: mo
Anyway the contour lines in the plot of Figure 7, that areealism from the simulation. Besides, the experimentalltes
the fourth grade polynomials obtained applying least sgjuasf using a model predictive controller on a real house have
method to the mean values of the distributions, show a cldzgen presented. Real weather forecast for the area arearsed f
tendency we could expect about the behavior of the algosthitihe model predictive controller. The price signal used ia th
that is that the controllers with price responsivenessluiipa simulation is artificial and created for enabling the conguar
are able to reduce the power consumption when there ibetween the different algorithms.



and some kind of logic to implement the algorithm; once the

communication and hardware requirements for enabling the
transmission of price signal are set up, weather forecast an
price forecast are services that can be built on the top of
the system without having impact on the complexity of the

Lz hardware architecture. The problem of how to compute good
] T £ price forecast still remains since the aggregate respofise o

3 +_
T T I I T DSRs is not perfectly predictable, time variant and depetde
| S J on many variables such as local conditions.

du [W]
o
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