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Abstract— Controlling the power consumption of many De- With rapid increase of the share of energy produced from
mand Side Resources, DSRs, will be required in the future variable renewable sources, the most severe challenges for

power system where a big share of the electric energy will be o hower system ancillary services are the ones related to
produced using stochastic renewable sources and the conwven .
the management of the regulating power.

tional power plants might not have the flexibility of providing
all the regulating power. Indirect control of demand side
resources is supposed to shift the electric power consumpti of From the power system point view, the response from a
each single unit through broadcasting of a control signal; he  single DSR unit is not relevant because the small amount
flexibility in the aggregated power consumption can be used ot nower it involves. Therefore it is important to control
for supplying balancing power to the electric power system. hiah b f electric loads t d ted
Indirect control approach is convenient from communication an hig num ero e(?c r_|<? oads to prp uce an gggregae
point of view since the real-time data flow is only in one response with some significance, and in order to impact the
direction because the decision is computed locally accomij to  operation of the grid. Controlling a big number of demand
user preferences. On the other hand, this approach resultsian  sjde resources requires a wide ICT infrastructure and cempu
open loop control scheme, since it is assumed that no realte — y4tional power, both local and centralized, for implementi
power readings from the units can be performed. The aim of decisi | zth d f tuating th ,d -

the paper is to discuss the performance of an emulated closed ecision algorithms and for actuating the eC|§|9ns._ .
loop control using an estimator for predicting the aggregaé Control approaches for DSRs can be classified in direct
power response and a regulator. By using these components and indirect. The former has the aim of controlling the
it is possible to produce a control signal to broadcast to amount of power that each single unit should use while the
distributed demand side resources. A population of DSRS, |5iter should be able to induce a shift in the power usage with

buildings with electric space heating, is indeed simulatedn . . o . .
a software simulation platform using an hardware in the loop ~Proadcasting a control signal: this could be a price sighial [

approach, that allows to feedback the real heat dynamics of Such as in the Flexpower project [5], where the final users
SYSLAB FlexHouse into the simulations for pretending more have a directly quantifiable economic advantage when they

realistic result. decide to shift the power consumption of their devices.
Direct control could give the possibility of driving pre-

cisely the consumption of DSRs but it is a very demanding
Demand side resources, or DSRs, are electric loads whasal-time process both from communication and computa-

electric power consumption can be shifted or controlled fational power point of view: informationi €. local conditions

a while without having a big impact on the quality of theor user preferences) has to travel from each device up to

services they are providing to the final users. Examples aih aggregator which has to elaborate it, to produce and

DSR devices are space or water heating, electric vehiclpsopagate decisions back to all units.

or also fully deferrable load such as washing machine or Indirect control can be realized with a simpler one way

dishwashers. In the case of water or space heating, theal-time communication (the price or control signal) and

flexibility is given both by the thermal inertia, that preven since all the decisions are computed locally, the computa-

instantaneous changes in the temperature, and by the féiohal load for the aggregator is not extensive.

that it is possible to vary the set point by a fraction without [6] presents a scalable and hierarchical implementation of

deteriorating user comfort. direct control with using aontrol-by-price approach. Such
Because of their flexibility, DSRs are suitable to be consolution has the advantage of embedding all the electric

trolled in order to provide power system services respgctinpower needs in a demand curve but it requires two-way

their constraints, physical limits and local user prefeen real-time communication as conventional direct control.

[1]. The power system ancillary services that could exploit

demand side resources capabilities are frequency regulati In this paper, an indirect control architecture for promli

[2] and spinning reserve restoration or regulating poweregulating power to the electric power system is presented.

DSR units could also support voltage control, if they ar@he aim of the proposed work is to test if indirect control

connected to the grid through an inverter with the possjbili can be used for driving a population of DSR units (electric

of regulating the reactive power [3]. space heating) following a given reference signal of the

electric power to consume. The control loop has been closed

' Al Authors are with DTU - Technical University of wijth a regulator and using an estimator, whose parameters
Denmark, department of Electrical Engineering Risg Campus dated li f dicti th ted
Frederiksborgvej 399, Building 776, 4000 Roskide, Derimar @'€ Updated on-line, for predicting the aggregated power

{f aso, hwbi }@l ektro. dtu. dk response.
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The control signal is directly produced by the control 000000000

. . . i Di 000000000

loop, so it does not have a market meaning; therefore in the 5. R >000000000
presented work, the concept of price signal does not apply 000000000
000000000

because there is no interaction with the electric market.
The proposed architecture has been implemented and
. . . Aggregate/Response
tested in a Java based simulation platform that allows to Estifnator
feedback into the simulations the thermal dynamics of a real
office building for introducing more realism.
Detailed descriptions of the simulation setup, the contralig. 1. The proposed control approach. A model is used fodigiieg

approach and a comparison with Flexpower project approal§ 2ggregated power response from all DSRs; a closed tmopwith a
regulator is used for producing the control signal to senthépopulation

DSRs population

estimator update (slow loop)

are g“/_en in Section 1. ) _of buildings. Subscripts refers to the discretized time interval= .
Section Il presents and discusses the results of the simu-
lations.

. . . . I Simulation platform
Conclusions are provided in Section IV. 1

Il. METHODS P o e
The overall overview of the control approach is shownin | Control ‘;fm_
Flgure 1. The quantityA P; expresses the amount qf regu- ALGs >
lating power needed by the power system at the discretized —> pf
time instantt = 4. The quantityA P; acts as a reference for :
the closed loop regulated system which is composed by a i
regulator and an estimator of the aggregated power response ' l
of the DSR units. A !
The control signap;, that is the output of the regulat® ’ @
at timet = 4, is then sent to the population of demand side Flexhouse

resources that should react as predicted by the estimator. _ _

tis woth to notice that the signl 7, does not express 76, %16 S sk Sulel e segess g
the absolute value of the electric power the units are requir 55 the hardware-in-the-loop for feeding back into the simulations real
to consume, but it is a reference for the variation in consimesnvironmental conditionsi¥; signal is for weather data?; is for electric
electric power to achieve; this means, for example, that f{eating power and’ is for indoor temperature. Quantify; is the control

. . signal introduced in Figure 1. Superscripts f, fm are respectively for

the grid needs demand side resources to consume 1 MWB&%ings index, FlexHouse, and FlexHouse thermal model\T; is the
electric power more thedh P, = +1MW. The aim of the prediction error of FlexHouse thermal model.
proposed control loop is then to require to the population of
demand side resources a variation in the consumed power: if
the model is able to predict correctly the aggregate respon$0 kW electric space heating. Each buildimgis controlled
of the DSRs population, the closed loop regulator takes caky its control algorithm that decides the heating powt
of producing the adeguate control signal to broadcast to tiier every instant of timet = ¢. Each buildingm has a
units in order to get from the them the required consumptioiemperature evolutiol;” where subscript still refers to
variation. a time instant. Input signalg; and W, of Figure 2 are

The control signal, which is common to all the units, igespectively the closed loop control signal (introduced in
broadcasted to the DSRs once every five minutes. As Figukégure 1) and local weather information which are required
1 shows, the quantity; is a classic control signal as intendedfor computing time evolution of the thermal models.
in systems theory; the control signal does not have an energyThe simulation platform also controls the electric space
price meaning because there are no interactions with theating of a real office building, FlexHouse[7]. Applying
electric market. the same control signal both to FlexHouse and its thermal

In the proposed approach, the regulator R is @odel allows computing a prediction erraf; = TiLTifm
proportional-integral and the gains have been chosen ierordi.e. FlexHouse temperature minus FlexHouse thermal model
to stabilize the closed loop system; a better solution coukgmperature) that is used for perturbing in real-time the
be defining a quadratic cost function and defining a L@ehavior of the population of buildings. Thisardware-
regulator because it assures stability of the loop if théesys in-the-loop approach allows both testing control algorithms

is stabilizable. on a real building and obtaining more realistic simulations
_ ) of buildings thermal dynamics because it feeds back into
A. Aggregate response simulation the simulations uncertainties and disturbances that ate no

Figure 2 shows the structure of the simulation setup. Thiaken into account while modeling (such as wind that might
box with the gray dots represents the population of thbave considerable cooling effect). Simulations are cdrrie
simulated demand side resources which, in this setup, @t in real-time for allowing the real building to react to
composed by 1200 buildings each of them equipped witbontrol signal. All the buildings are subject to same weathe



condtions. B. Estimation of the aggregated response

Outputs of the simulation platform are the aggregate The transfer functionF(s) (with s Laplace operator) of
power response of all DSRs, the power consumption anfle model used for estimating the aggregated response of
temperature profiles of each single building and FlexHousgne population of demand side resources has the form that is

shown in Equation 5.
FlexHouse is a small automated office building which is
o AP(S) bQS + bl

heated by ten 1 kW electric heaters that can be controlled. F(s) = (5)
Flexhouse is part of SYSLAB[8], the DTU distributed power p(s)  s?+as+a

system facility located in Risg campus. The simulation has The symbolsAP(s) and p(s) in Equation 5 are for the
been realized with a Java platform that allows to perforrdeviation in electric power consumption and the control
dynamic simulations of generic model and it is linked withsignal respectively; coefficients;,as, by, by are the
SYSLAB. parameters that have to be identified.

The models for the population of buildings are derived The numerator of the transfer function is a pure derivative
from FlexHouse thermal model, where relevant parametevghen b; = 0 and that is to expect because the step
(thermal resistance and capacity) have been modified fellowesponse of the demand side control algorithm does not give
ing a normal distribution. Equations 1 and 2 show the secorahy steady state contribution (this comes from Equation
order system of continuous time linear differential equagi  4), therefore it must be the same for the aggregated response
used for describing thermal behavior of Flexhouse [9] (time

dependency is omitted). The parameters of the transfer function are identified with
. . using standard least squares. An observation madriand
. —2.73x107°>  9.15x107° o . o
T = - Lz (1) columnp are built with observing the past realizations of the
1.48x107% —1.48x1073 . . .
aggregated response for a given control history; the vector
0 1.81x10-° 7.38x10-4 Jojut p, that contains the parameters that need to be estimated, is
11 48210-2 0 0 T indeed obtained using Equation 6 that allows to minimize
_ S the 2-norm of the difference among real measurements and
™ =01 0)z (2) the estimated values[12].
whereT™™ is the indoor temperature and the input quantities p=(H"H)"'H"b (6)

P, T°%, S are respectively the heating power, the outsid@ecayse the simulations are performed in discrete time

temperature and the solar radiation. Temperatures alfyns the transfer function that is really estimated itis t
expressed in°[C], electric power in [kW] and sun radiation ;. jomain version of Equation 5.

in [kW/m?]. Continuous time model is discretized with a

time step of20s for simulations. The estimation process is repeated on-line during the

] ) ) simulations once every six hours; the periodic update of
The algorithm chosen for controlling the space heating fofe estimator is required because the aggregated response
all the buildings is proposed in [10],[11]. It was originall ¢ pSR units is not time invariant and it could change, for
used for controlling DSRs with a price signal. In this confex gyample because some DSR units stop working, because of
the price signal is replaced by a generic control signatommunications problems or correlated changes to algorith

Algorithm is described by Equations 3 and 4: sensitivity to control signal i coefficients in Equation 4)
AT, = —k p; 3) operateq by users. _ _
o pi— s The time constants of the estimator are also affected, in
g = — (4)  the case of space heating, by variation in weather condition

g; . .
’ (outdoor temperature and solar radiation for example} thi

wherep;, p; ando; in Equation 4 are respectively the currentmeans that the estimator could easily have different values
value of the contr_ol S|gngl, the averag_e_and s_tandard (_lh_amat for the parameters depending if it is night or day time.

of the control signal history. Coefficiert is a positive  The estimator is estimated also at the beginning of the
constant and sets the price responsiveness capabilityeof §mylations with a training signal: DSR units are exposed to

algorithm by producing the offsek 7’ for the indoor comfort - several step variations of the control sigpalfor six hours.
temperature. Virtually, every time= i a new control signal

is received, a new offsebT" is computed and it is used for  As mentioned before, indirect control uses only one
producing the indoor temperature set pdiift "' according way real-time communication for broadcasting the control
following Equation: signal p; to all the distributed units. In this proposed

Tintel — 93°C 4 AT, setup, it is_req_uired also to read the power consumption

of DSR units in order to update the parameters of the

The set point7!" ™" is then achieved using a traditional estimator; identification process does not have strict-real
thermostat controller with an interval af2.5°C' time constraints and, besides, it is not repeated with theesa



frequnecy as the control signal is sent. Furthermore, sintke global consumption is required while, in the proposed
the estimator uses only information about the aggregaspproach, variations in power consumption are treated,;
response, it is not even necessary to communicate withis allows to simplify the estimator form since it does
each single unit because it possible to use readings fromot need to take into account information such as outdoor
the SCADA system of the distribution system operatotemperature, in the case of space heating for example,
Because the model for estimation predicts the deviation ipecause it is assumed that the unit commitment scheduled
the aggregate power consumption given a control signa aware of the energetic needs of DSRs.
(F(s) = API(DS)), the readings from the SCADA system can
be used without distinguishing between the electric load Finally the proposed approach is a closed control loop:
that provides support to regulating power and the one thttis means that is possible to define the performance of the
does not: in fact the power that does not have sensitivity teegulation loop with choosing a suitable values for the regu
control signal is automatically discarded by the paransetetator R. This can be useful because in this way it is possible
estimation process because it does not react to any variatim modify the dynamics of the aggregate response and for
of it. example deciding if having a fast but brief contributionrfro
DSRs or the opposite. In the case of Flexpower, producing
It is noting that the single contribution from each singlea price for defining an appropriate dynamic response of the
DSR unit is strongly non linear with respect the controDSRs would require to override the bids market mechanism.
signal; non linearities are introduced both by the demadel si
control algorithm discussed before and by the thermostatic
controller that takes care of maintaining the computedéndo  As explained in Section Il, simulations here presented are
temperature in each building. In this proposed setup, th@btained with sending a control signal to a population of
linear transfer function of Equation 5 is used to predict thd200 building warmed using electric heating and with 10 kW
dynamics of the aggregated response because the relat@gnominal power for a maximum total power consumption
high number of DSR units can mitigate the effects of nogapability of 12 MW. Buildings are modeled using second
linearities. order models with uniformly distributed parameters; the
Non linearities are also introduced in the simulation byrardware in the loop approach, discussed in Section I,
the hardware-in-loop-approach because non linear effeggquires that the simulations are carried out in real-time.
act on Flexhouse (convection for example). Each DSR unit is controlled with an algorithm that is able to
move the power consumption according to a control signal.
_ _ ) Control signalp; comes from a regulator driven by the
C. A comparison with Flexpower project approach difference between a power reference deviatioR and the
Flexpower is a Danish national research project whosarediction of DSRs aggregated power response computed by
aim is to develop a five minutes real-time electric markean estimator (Figure 1).
that is able to attract a large number of small scale ressurce In the following plots, the time values on the-axis
for contributing to regulating power provision. The cutrendoes not refer to the absolute time of the day but it is the
markets, day-ahead and hour ahead, are maintained as itheremental time of the experiment.
basis of the normal power system operation. Regulating
power market will be extended with using a one way price Plot (@) of Figure 3 compares the power consumption of
signal propagated to all subscribed market participantie population of buildings when they are required to suppor
that will react according their needs and user settingthe power system (blue line) and when they are not (red line).
The one way price signal is calculated using the curremlot (b) of Figure 3 shows the indoor temperature profiles of
regulating market and it is the most expensive selected bidne of the building randomly selected from the population.
an estimator of the aggregate power response computes Bed line is the temperature profile when the heating power is
amount of power that DSRs can consume with the givecontrolled by a traditional thermostatic controller; blirge
price; then the system operator should take into accouat als the temperature profile when the heating is managed by
this amount of power when it will select the bids to activatethe algorithm with price responsiveness capability diseds
and it will send the price signal to all market participants. in Section II.
The blue temperature profile of the plds) (of Figure 3
The first difference between Flexpower approach and thexhibits a certain time delay compared with the red one
setup proposed here is in Flexpower, the control signal end that is obtained by the control algorithm with slightly
the price for the electric energy and the mechanism fazthanging the indoor temperature set point (Section Il thi
building it follows conventional electric market rules. small time delay allows shifting power consumption and
obtaining an important difference in the aggregated power
The estimator is used in the same way in both approacheesponse without compromising individual user comfort.
that is predicting DSRs power consumption given a control It is worth noting that plot i) of Figure 3, even if
or a price signal. The difference in the estimation prociss,it shows the temperature behavior of just one random
is that, in Flexpower, a prediction on the absolute value djuilding of the population, is a good indication of the

I1l. RESULTS ANDDISCUSSION
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Fig. 3. Plot @) shows the different profiles of the aggregated powerFig. 4.  The blue line shows the response of the aggregatederpow
response of the population of demand side resources whemtbeequired consumption of DSR units to multiple steps variation of tever reference

to support the grid (blue line) and when not (red line). Pl)tghows the  which is the red line; the green line is response of the estma

indoor temperature behavior of one of the building of theysation both

when its thermostat is controlled by the demand side algoriand when

the set point is the optimal indoor comfort level. . .
P P component that depends on the history of the control signal.

Plots in Figure 5 refer to two other experiments and they
oth show, as for Figure 4, the profiles of the variation of
the aggregated power response when a referénewith
multiple steps variation is applied.

Plots in Figure 3 and 4 refer to an experiment carried out The green line of plot 5d) shows a different behavior than
in a cloudy winter period (no solar irradiation) and with NOthe one in Figure 4 because the parameters of the estimator
significative differences in temperature during hourss thiy, . - .o updated on-line, have changed. '
explains why the r.ed Iinel of Figure 3 is ne_arlly flak. the Plot (b) in Figure 5, Which is obtained with a simulation
de”ﬁa”d f°f electric hegtmg power was S|m|!ar for 6}” .th%vithout hardware-in-the-loop and using constant values fo
perlod.. Besides, the rgd line is ”ea”y. flat even if the bogsi weather data, shows that the control loop is not able to ieduc
are using ther_mostatlc based c_:on_troé.(ON/OFF_ control) a deviation in the aggregated power response closed to its
because the high number of units in the population of DSRPeference. This is because the outdoor temperature has been
chosen close to the indoor comfort one; this produces the

Figure 4 reports the deviation in the aggregated pPOWeftect of reducing the number of DSR units that need electric
consumption of DSR units together with its requested refe[)'ower concurrently. With lower number of units then the

ence signal A F;, as reported in Figure 1) respectively with,,, jinearities, introduced by the control algorithm and th

the blue and red lines; the green line is the prediction of thg,ermostatic cycles, starts to become evident and to degrad
aggregated power response computed by the estimator. yhe canapility of the regulator to produce a deviation in the

Two step variations for the consumed power are requiréghgregated power response similar to the power deviation
to the aggregated response of the population of DSR unitgerence signal P.

the amplitude of the variations are respectively 2 MW and

500 kW (+44% and +11% with respect to power that was IV. CONCLUSION AND FUTURE WORK

consumed) and the length is one hour for both. In this paper, an indirect control strategy with the aim of
The negative peaks of the blue line of Figure 4, jusproviding regulating power to the electric power system is

after the two step variations of the reference, were expectgeresented.

because DSR management algorithm receives a new controlThe proposed setup allows to set a reference for a de-

value that is suddenly greater than the previous ones amtion in electric power to consume that is required to

then it starts to bring the indoor temperature set point & thithe demand side aggregated response; then, a feedback

optimal one; this causes a rapid decrease in the consunmegdulation loop with a regulator produces the control signa

power. In order to avoid this effect, a control algorithm forthat is broadcasted to the demand side resources.

DSRs with a steady state response different than zero wouldThe loop is closed with an estimator that predicts the

be necessary; this could provide benefits from power systeaggregated power response of DSRs. The parameters of the

point of view but it can override local user preferenceglinear) estimator are identified on-line every six hourggs

because that equals to add a memory effect to the demaedst squares; identification process does not have statt r

side control algorithm: for example in the case of spactme constraints on the communication and is not as frequent

heating, the indoor temperature set point would have as the the real-time control signal, that is delivered every

comfort level for all the buildings because all of them use
the same algorithm for controlling their indoor space hesti
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Fig. 5. Power deviation reference, DSRs aggregated povsponse and

estimated power response for two different experimentati@bloop does

and the thermostatic controller that is used for maintgnin
the indoor temperature reference produced by the algorithm

Future work in the proposed control approach will be in
the direction of improving the overall control performasage
this can be done with looking for a better estimation of the
aggregated power response, for example by increasing the
frequency of the estimator identification process. Also the
closed loop regulator could be improved in terms of stapbilit
and in order to get out of the aggregated power response the
most useful dynamics for the power system.
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When the number of units that are using electric power

concurrently decreases (and this happens in the case

of

space heating when the differences between the indoor
temperature set point and the outdoor temperature is small
or the sun is providing most of the thermal energy for
maintaining the set point), then the non linear effectststar
to be visible in behavior of the aggregate power response.
Non linearities between power response and price signal are
due to both the non linear demand side control algorithm



