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Abstract—The paper contributes to improving the computa-
tional performance of controls of distributed energy resources
(DERs) in distribution grids for efficient real-time control and
short-term scheduling. The considered setting is a distribution
grid with heterogeneous DERs controlled with model predictive
control (MPC) to track a dispatch plan at its grid connection
point (GCP) subject to DERs’ and grid’s constraints. The MPC
control is first expressed as a quadratic programming (using
linearized grid models) and, then, solved with several state-of-the-
art alternating direction optimization methods: AMA, ADMM,
AADMM (ADMM with adaptive penalty parameter) and their
accelerated variants: FAMA, FAADMM, and FAADMM with
restart rule. Performance is tested in terms of computational
performance, constraints satisfaction, and optimality against the
centralized MPC. The case studies are the CIGRE and IEEE
benchmark grid for low- and medium voltage systems hosting
different numbers of controllable DERs.

Index Terms—Alternating direction optimization, accelerated
methods, model predictive control, linear power flow.

I. INTRODUCTION

The wide deployment of renewable power generation in dis-
tribution networks requires suitable coordination frameworks
to coordinate distributed energy resources (DERs) to support
the operations of both the local grid (e.g., voltage control and
congestion management [1]–[3]) and the upper-level grid (e.g.,
dispatch and frequency control [4]–[6]). Frameworks based on
model-based optimization and model predictive control (MPC)
have been widely advocated in the existing literature to tackle
these problems thanks to their feature of explicitly modelling
the constraints of the grid and DERs. In order to reduce
the complexity associated with solving large problems with
many DERs and, in some cases, achieve privacy-preserving
formulations that do not require to exchange DERs’ full state,
distributed optimization methods have been considered. For
instance, the work in [7] proposed an MPC formulated with
the alternating direction method of multipliers (ADMM) to
coordinate between battery storage and curtailable PV plants
accounting for the grid constraints. The works in [8], [9]
proposed to use distributed optimization to solve the optimal
power flow (OPF) problem. Although these methods fulfill
their premises in satisfying the grid constraints and achieving
the control objectives, the convergence performance was quite
poor and it called for accelerated variants based on alternating
direction optimization methods [10]. The aspect related to
convergence and computation burden is critical in a practical

context, especially in real-time controls, where the setpoints
have to be issued with refresh rates of tens of seconds.

In this paper, we tackle the problem of improving the
computational performance of MPC for grid control by using
alternating direction optimization methods. The methods that
we survey and of which we demonstrate their applicability
are: alternating minimization algorithm (AMA), Fast-AMA
(FAMA), ADMM, ADMM with adaptive penalty parameter
(AADMM), Fast AADMM (FAADMM), and FAADMM with
restart (FAADMM+R). We consider different distribution grids
with multiple controllable heterogeneous resources, controlled
to track a dispatch plan subject to the local grid’s and their
operational constraints. Algorithms’ performance is evaluated
in terms of computation time, feasibility, and dispatch track-
ing error against the equivalent centralized formulation. For
the dominant algorithm, we evaluate how the computational
performance scales with the number of controllable resources
and on larger power grids.

The rest of the paper is organized as follows. Section II
presents the problem to be solved, Section III the decompo-
sition methods, and Section IV the simulation results and the
performance comparison. Finally, Section V summarizes the
work and presents the conclusions.

II. PROBLEM STATEMENT

We consider the problem of real-time MPC of control-
lable resources connected to a power distribution network for
achieving its dispatchability while accounting for the local
grid’s constraints. The work was originally proposed in [7] and
solved using ADMM by decomposing the control problem into
the resources and the grid’s ones. In this work, we reformulate
it as a quadratic program (QP), allowing us to use the standard
alternating direction optimization methods along with their
accelerated variations. For the sake of readability, we recall
the centralized formulation used in [7].

A. Centralised problem

We consider a generic distribution network, radial or
meshed, with nb nodes and nl branches. We assume that i) the
system is in quasi steady-state and can be modeled by phasors,
ii) the system is balanced and can be modeled by means
of the direct sequence equivalents although the formulation
can be easily extended to an unbalanced system e.g. [11].
Let t denote the index of the current time interval, T the
number of intervals in the scheduling horizon, �t the time-
resolution and T = [t, t+1, . . . , T ] the indices spanning fromAccepted to PowerTech Madrid, 2021.



time t�t to the end of scheduling horizon T�t. The network
interfaces controllable resources with r 2 R = [1, . . . , R] as
index and prt , q

r
t as the active and reactive power set-points to

determine. Here, prt , qrt are collected in vectors pt,qt 2 Rnb�1

respectively. The elements of pt and qt that correspond to
nodes without controllable resources are assumed to be zero.
Let bpdisp

t be the dispatch plan set-point, and qgcp
t the decision

variable for the reactive power at GCP, the scalars plt, qlt be
the net active and reactive grid losses, and punc

t 2 Rnb�1

and qunc
t 2 Rnb�1 the node-aggregated uncontrollable active

and reactive power injections. The objective is to track the
dispatch plan using the controllable resources. The problem is
to compute the set-points of the controllable resources so as
to minimize the weighted sum of operation costs of different
controllable resources, fr(prt , qrt ), and the dispatch error, �t:

minimize
pt,qt,t2T

RX

r=1

X

t2T
wrfr(p

r
t , q

r
t ) +

X

t2T
w��

2
t , (1a)

subject to:

1>pt + 1>punc
t + plt = bpdisp

t + �t t 2 T (1b)
1>qt + 1>qunc

t + qlt = qgcp
t t 2 T (1c)
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tan(⇡/2� ✓m)

t 2 T (1d)
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where Av
t 2 R(nb�1)⇥2(nb�1), Ai

t 2 Rnl⇥2(nb�1), and
appt,a

p
qt
,aqpt,a

q
qt

2 R(nb�1) are the partial derivatives (or
sensitivity coefficients) of magnitudes of nodal voltages, lines
currents and net losses, respectively, with respect to the nodal
power injections and bv

t 2 R(nb�1), bi
t 2 Rnl , and bpt , b

q
t 2 R

are known terms of the linear grid model. The sensitivity
coefficients are computed with the procedure described in
[12] that consists in solving a system of linear equations
(with unique solution when the load-flow Jacobian is locally
invertible [13]) as a function the grid admittance matrix and
the nodal injections around the operating point to linearize.
Symbols vmin and vmax are the minimum and maximum
voltage limits, and imax is a vector with the line ampacities.
Symbols wr and w� are weighting coefficients and their values
are given in Appendix A. Constraint (1b) bounds the active
power flow at the GCP to the dispatch plan with dispatch error
�t which is minimized in the objective. Eqs. (1c), (1d) impose
a lower bound on the power factor cos (✓m) at the GCP by
constraining the reactive power flow to the upper-grid layer.
Eq. (1e) is inequality constraint that group all the operational
constraints of resource r. A practical example is given in the
next paragraph. Constraints (1f) and (1g) impose the limits on
the nodal voltages and branch currents respectively. Eq. (1h)

is the linear model for grid losses. The resource constraint, �r

and the objectives, fr are here made explicit for two cases: a
battery energy storage system (BESS) and a PV plant.

1) BESS with four-quadrant power converter: BESS’s ac-
tive and reactive power injections, pbt , q

b
t , are subject to the

capability curve of its power converter. Approximating it as
independent from the voltage of the grid and DC bus, this
constraint reads as:

0  (pbt)
2 + (qbt )

2  (Sb
max)

2, (2a)

where Sb
max is the converter rated power. By modelling the

power losses due to non-ideal charging/discharging efficiency
as described in [14] (it augments the grid model with a virtual
resistive line at the BESS grid connection point), the BESS
state-of-energy (SOE) is:

SOEt = SOEt�1 � pbtTs, (2b)

where Ts is the duration of the (piecewise constant) control
action. It is subject to

aEb
max  SOEt  (1� a)Eb

max, (2c)

where Eb
max is the BESS’ energy capacity, and parameter a

can be designed to fine tune the bounds. The constraints here
above form the term �b(pbt , q

b
t ) in (1e). The cost function

can be designed by the modeller to optimize the resource-
specific operational objectives (e.g., ageing, ramping rates,
etc.). We choose the norm-2 of the injected active power so as
to minimize the BESS’ use and implicitly reduce cycle ageing:

fb(p
b
t , q

b
t ) = (pbt)

2. (2d)

2) Curtailable PV plant with controllable reactive power:

The goal is minimizing the curtailed (wasted) production and
operate near unity power factor to reduce grid losses. With
pgt , q

g
t as the active and reactive power injections, the cost is:

fg(p
g
t , q

g
t ) =

n
(pgt � bpgt )2 + (qgt )

2
o

(3a)

where bpgt is the (forecasted) PV generation potential.1 It holds:

0  pgt  bpgt . (3b)

With the power converter capacity, Sg
max, the constraint is:

0  (pgt )
2 + (qgt )

2  (Sg
max)

2. (3c)

B. QP equivalence

Problem (1)-(3) can be written in standard QP from:

arg min
x

1

2
x>Dx+e>x (4a)

s.t. Gx  h (4b)

where x is the decision variable, and D, e, G, h are appropri-
ate matrices and vectors that can be derived from the original
problem as described in Appendix A.

1Note that the realised PV generation may differ from forecast bpgt ; the
incurred error can be compensated by the MPC in following timesteps.



To decompose the QP problem, we introduce a new set of
slack variables z, and indicator function I+(z). Therefore, the
QP problem can be reformulated as:

arg min
x,z

1

2
x>Dx+e>x+ I+(z) (5a)

s.t. Gx+ z = h (5b)

The form in (5) is useful as it can be solved by standard
algorithms for distributed optimization, as described next.

III. ALTERNATING DIRECTION OPTIMIZATION METHODS

The alternating direction methods are based on the notion
of augmented Lagrangian, implemented by introducing a set
of Lagrange multipliers y. By defining scaled dual variables
u = y/⇢, the augmented Lagrangian is:

L⇢(x, z,u) =
1

2
x>Dx+e>x+ I+(z)+

⇢

2
||Gx� h+ z+ u||22.

(6)

This problem is solved by sequential optimization with respect
to x and z variables, thereafter the duals u are updated. Here,
⇢ refers to the penalty parameter. Several methods have been
reported in literature to solve this problem, as described next.

1) ADMM: this method was first reported in [15]. The
updates of x, z and u are derived by solving the Lagrangian
(6) for each variables in sequence. They are simplified to linear
matrix operations as follows, the k-th iteration updates are

xk+1 = �(D+ ⇢G>G)�1[e+ ⇢G>(zk + uk � h)] (7a)
zk+1 = max{0,�Gxk+1 � uk + h} (7b)
uk+1 = uk +Gxk+1 � h+ zk+1. (7c)

2) AMA: this method was developed in [16]. The iterative
steps are simpler than ADMM, but the objective function
should be strongly convex (i.e., D ⌫ ⇢I, I being the identity
matrix) [10], [17]. In AMA, the x-minimization step does not
include the augmented Lagrangian. This results in

xk+1 = �D�1[⇢G>uk + e]. (8)

The other two updates are the same as in the ADMM.
3) Fast ADMM (FADMM) and AMA (FAMA) methods:

first introduced by Nesterov in [18] for accelerating the
gradient-descent algorithm, it was later applied to accelerate
the conventional alternating direction algorithms (AMA and
ADMM in [10]) by updating the variables with a adaptive
scaling [10] as follows:

↵k+1 =
1 +

p
1 + 4(↵k)2

2
(9)

bzk+1 = zk+1 +
↵k � 1

↵k+1
(zk+1 � zk) (10)

buk+1 = uk+1 +
↵k � 1

↵k+1
(uk+1 � uk). (11)

Eq. (9) introduces a predictor-corrector acceleration factor to
the auxiliary and dual variables in (10) and (11). The approach
is stable when the objective function is strongly convex. The
quantities with ( b. ) are used in x and z updates as in (7)-(8).

4) Fast ADMM + R: the method is a variant of the last one,
where a restart rule is applied based on the combined residual
(primal and dual residual error). The steps are the same except
a restart rule that is introduced depending on the value of the
combined residual lk = 1/⇢||yk � byk||22 + ⇢||zk � bzk||22. If
the condition lk < ⌘lk�1 is met (⌘  1 is a parameter), it
proceeds with the same steps as the Fast method (9)-(11),
else the variables are reset as in the previous iteration. This
step is called restarting and it enforces the monotonicity on the
objective (assuring that primal and dual updates are updated in
descent direction with respect to residuals). It is recommended
to use the restarting step as infrequently as possible, so ⌘ is
chosen close to 1 (for example, 0.999) [10].

A. Convergence criteria

A typical convergence criterion used in the literature is
to stop when the primal and dual residuals reduce below a
feasibility tolerance bound. Although the residuals converge
to zero at the optimum, a tolerance bound is useful to limit
the number of iterations. The primal and dual residuals are
skpri = ||Gxk � h + zk||2 and skdual = ||⇢GT (zk+1 � zk)||2
respectively. The convergence criterion is

skpri  ✏kpri and skdual  ✏kdual, (12)

where ✏kpri and ✏kdual are primal and dual feasibility tolerances
as defined in [17] and are given as

✏kpri =
p
N✏abs + ✏relmax{||Gxk||2, ||zk||2, ||h||2} (13)

✏kdual =
p
M✏abs + ✏rel||G>uk||2. (14)

Here, N and M are dimensions of variables z and x respec-
tively. The values for ✏abs and ✏rel can vary depending upon
the application, we set them to be 10�4.

1) Penalty parameter: As known, the convergence speed of
the augmented Lagrangian-based methods is sensitive to the
penalty parameter ⇢ [17]. A heuristic-based penalty parameter
was used in [19]. The work in [20] proposed an adaptive
scheme for updating ⇢ each iteration based on the recent primal
and dual residuals. In this iterative scheme, where the dual and
primal residuals are balanced with each other by a factor µ as
they both converge to zero, giving the name residual balancing.
The iterative scheme for updating ⇢ is:

⇢k+1 :=

8
><

>:

⌧incr⇢k skpri > µskdual

⇢k/⌧decr skdual > µskpri

⇢k otherwise,
(15)

where ⌧incr and ⌧decr are multiplying factors. We set µ = 10
and ⌧incr = 2 and ⌧decr = 2 as reported in [20].

IV. SIMULATION RESULTS

A. Simulation setup and input data

1) Setup: The MPC control scheme is applied to the
CIGRE low voltage benchmark network [21], which is a three-
phase 0.4 kV/400kVA, 18-bus system shown in Fig. 1. The
grid hosts 200, 15, 52, 55, 35, and 47 kW of electrical demand
(with a power factor of 0.95) at nodes 1, 11, 15, 16, 17, and 18,



Fig. 1. CIGRÉ low voltage benchmark network [21]

respectively. It is connected with a BESS of 200 kWh/200 kW
at node 17 and a curtailable PV plant of 60 kWp at node 15.

The electrical demand and PV generation profiles are shown
in Fig 2. These time-series are from real-life measurement
collected at the EPFL campus and correspond to the electrical
demand of four buildings with rooftop PV installations. The
dispatch plan to be tracked, computed with the method in [7],
is shown in black in Fig. 2. As it can be seen, the net power
at the GCP differs from the dispatch plan, thus the objective
of the MPC algorithms is to ensure a power flow at the GCP
matching with the dispatch plan by controlling the controllable
resources. The real-time operation implements power setpoints
with a time resolution �t = 5 minutes. The MPC scheduling
horizon is 3 hours. The simulations are done on a personal
computer with a 2.7 GHz i7 CPU and 16 GB RAM memory.

Fig. 2. Active power profiles: the curve in blue displays the load prosumption
at the GCP, PV profile is shown in red and the dispatch plan is shown in black.

B. Comparative analysis

We present a performance comparison of MPC among
different solving algorithms. We compare the following: AMA,
ADMM, FAMA, ADMM with adaptive penalty parameter
(AADMM), Fast-AADMM (FAADMM), and FAADMM with
restart rule (FAADMM+R). The same tolerance bounds (III-A)
are used for all the algorithms. The performance metrics are:

• convergence speed: it is measured in time and number of
iterations, both expressed in mean, max and min values.

• tracking error of the dispatch signal: it is the error
between the pre-defined dispatch plan and the net pro-
sumption after MPC. We show root mean square error
(RMSE), mean and maximum error;

1) Convergence speed: Table I reports the statistics on
convergence time and iterations of the algorithms. We also
compare against the centralised problem (1)-(3), solved with
the commercial solver MOSEK [22]. It can be seen that
FAADMM+R has the minimum mean convergence time

compared to other methods, whereas AMA has the worst
convergence speed. The ADMM shows better performance
than AMA as the latter does not consider augmented La-
grangian in the x-minimization step. By comparing ADMM
and AADMM, it can be noted that using the adaptive penalty
parameter improves the convergence speed by a factor of
3. The fast methods also improve the convergence speed:
FAMA achieves 1/20-th of the AMA’s convergence time,
FAADMM reduces the mean convergence time of AADMM
by 8%. Finally, applying the restart rule further improves
the convergence speed of FAADMM by 15%. It can also
be observed that the accelerated and adaptive methods score
better than the centralised method.

TABLE I
CONVERGENCE SPEED WITH DIFFERENT METHODS FOR ONE DAY OF

OPERATIONS.

Method Time (sec) Iterations (#)
Min Mean Max Min Mean Max

AMA 0.04 51.40 171.5 3405 37895 100000
FAMA 1.8e-3 2.39 10.9 100 2102 9361
ADMM 0.03 2.98 18.9 299 797.8 4868

AADMM 8.9e-3 1.09 3.3 92 314 922
FAADMM 8.5e-3 1.01 3.3 92 314 922

FAADMM+R 3.3e-3 0.86 12.4 54 245.6 3419
Centralised 1.33 1.51 3.0 n.a. n.a. n.a.
(MOSEK)

2) Dispatch tracking performance: Table II lists the dis-
patch tracking performance of the MPC solved by different
algorithms. It also shows the PV energy curtailed by the
MPC to avoid depleting battery’s flexibility. The results are
analysed for a single day of operation. From the table, it
can be seen that the AMA, FAMA and ADMM have simi-
lar performances and coincide with the centralised solution.
AADMM and FAADMM have better mean error than others
but slightly higher maximum error. FAADMM+R performs
poorly in terms of the RMSE and maximum dispatch error,
and curtails PV slightly more. This is due to the restarting step,
which relaxes the solutions leading to early convergence.

TABLE II
TRACKING ERROR WITH DIFFERENT METHODS AND CENTRALISED

METHOD FOR ONE DAY OF OPERATIONS.

Method Dispatch error (kW) Curtailed
RMSE Mean Max PV energy (%)

AMA 0.03 -0.015 0.085 43.13
FAMA 0.03 -0.015 0.085 43.13
ADMM 0.03 -0.015 0.085 43.13

AADMM 0.04 -0.01 0.158 43.09
FAADMM 0.04 -0.01 0.158 43.09

FAADMM+R 0.35 -0.01 1.215 42.95
Centralised (MOSEK) 0.03 -0.015 0.085 43.13

We also present the comparison of dispatch tracking and
power-setpoints of the controllable resources by different
algorithms and the centralised method in Fig. 3. The plots
labeled as “without MPC” refer to the case when MPC is not
used. As it can be observed from Fig. 3a, all the algorithms
manage to track the dispatch plan successfully and, above



all, the solutions obtained by the decomposition algorithms
match with the centralised solution. Fig. 3b shows the state-of-
charge evolution and the active power injections of the BESS
unit. Fig. 3c shows the active power from the curtailable PV
plant. Here, it can be observed that the MPC is able to control
BESS and PV (satisfying their operational limits) and achieve
a successful dispatch: PV begins curtailing production at 8:00
UTC to anticipate the saturation of BESS flexibility at 14:00
UTC, also helping in tracking the dispatch plan at the GCP.
From these analyses, we conclude that FAADMM achieves

(a) Dispatch plan (bpdisp
t ), active power at the GCP with and without

MPC.

(b) BESS active power injection (pbt ) (upper panel), and SOC evolution
and respective limits (bottom panel).

(c) PV active power without (bpgt ) and with MPC (pgt ).

Fig. 3. MPC simulation results with the different methods.

the best performance (both in convergence speed and dispatch
error) and it will be now used in a sensitivity analysis.

C. Sensitivity analysis on convergence performance

We evaluate the performance of FAADMM for increasing
numbers of decision variables to verify how the convergence
time scales, for example, in a larger power grid. We simulate
using distributed BESSs units with equal size rating such that
the total reservoir size is same for all the cases. Table III shows
the convergence time and number of iterations for FAADMM
using 2, 3, 4 and 5 BESS units placed at nodes 13, 14, 15,
17 and 18. As it can be observed, the convergence time scales
proportionally with the number of controllable units. We also
evaluate how the computational performance of FAADMM
scales with the number of grid nodes, considering the IEEE34
and IEEE123 balanced systems [23] with two controllable

TABLE III
CONVERGENCE SPEED OF FAADMM FOR INCREASING NUMBERS OF

CONTROLLABLE DERS.

BESS Time (sec) Iterations (#)
# units kWh Min Mean Max Min Mean Max

2 100 6.3e-3 2.63 8.37 92 281.2 813
3 66.7 8e-3 3.47 7.74 82 232.4 444
4 50 6e-3 6.21 18.43 87 373.9 1391
5 40 7.1e-3 8.20 21.8 95 256 613

units: a PV plant and a BESS. Results in Table IV show that
the computation time grows proportionally with the number
of nodes and, compared to Table III, with a relatively slower
rate than for the number of controllable resources.

TABLE IV
CONVERGENCE TIME OF FAADMM WITH LARGER POWER GRIDS.

Network Controllable resources Time (sec)
BESS PV plant Min Mean Max

IEEE34 1 MW/2 MWh 480 kWp 9.5e-3 4.43 20.2
IEEE123 2 MW/4 MWh 600 kWp 8.3e-3 9.13 59.5

V. CONCLUSIONS

We have compared the technical and computational per-
formance of different solution methods for distributed opti-
mization problems in the context of dispatching a distribution
grid with heterogeneous resources subject to grid constraints
formulated with an MPC.

We have shown that, by using linearized models of the grid
and realistic models of the controllable resources (generaliz-
able to a wide class of existing systems), the centralized MPC
problem can be written in standard quadratic form. In this
form, the problem can be readily decomposed using the notion
of augmented Langrangian and solved efficiently by applying
linear operations iteratively with a number of methods from the
literature which are: AMA, ADMM, AADMM (ADMM with
adaptive penalty parameter) and their accelerated variants:
FAMA, FAADMM, and FAADMM with restart rule.

First, the methods were evaluated on a low-voltage grid
with two controllable resources (a curtailable PV plant and
a BESS) and uncontrollable stochastic demand, then, the
dominant method was used for sensitivity analysis with in-
creasing number of BESSs, and on larger power grids. The
performance comparison concerned three aspects: computation
time (critical for real-time and near real-time grid control
and scheduling), constraints feasibility (which was met in
all cases), and dispatch plan tracking. The fast and adaptive
ADMM (FAADMM) scored the best computation time (1/3
compared to ADMM) and control performance. The control
performance of the decomposition algorithms coincided with
the centralised solution (solved by MOSEK). The sensitivity
analysis showed that the method scales approximately linearly
with the increasing numbers of decision variables supporting
the conclusion that this framework can be successfully de-
ployed in actual grids.



APPENDIX

A. QP equivalance of the centralized problem

We derive the matrices of the standard QP problem for the
problem (1)-(3) for time interval t.

xt =

2

4
pt

qt

�t

3

5 =

2

66664

pgt
pbt
qgt
qbt
�t

3

77775
;Dt = diag

0
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For the multi-period formulation, the decision variables and
the matrices above are written by concatenating and block-
diagonalizing individual time-step quantities, respectively. The
SOE constraints should be propagated to the next step. Eq.
(16f) approximates the converter capability (2a) and (3c) with

� linear constraints with slopes m1, . . . ,m� and intercepts
cbess
1 , . . . , cbess

� and cpv
1 , . . . , cpv

� . Symbols wg and wb are the
weights of PV’s and BESS’s objectives. The weighting coef-
ficient of the tracking objective, w� = 5e3, is chosen larger
than for PV, wg = 1e2 and BESS, wb = 1e2 to prioritize it.
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